浏览全部资源
扫码关注微信
1. 山东理工大学 电气与电子工程学院,山东 淄博 255091
2. 上海理工大学 光学与电子信息工程学院,上海 200093
收稿日期:2011-11-14,
修回日期:2012-01-06,
网络出版日期:2012-05-10,
纸质出版日期:2012-05-10
移动端阅览
王雅静, 申晋, 郑刚, 刘伟, 孙贤明. Tikhonov正则化与多重网格技术相结合的动态光散射反演[J]. 光学精密工程, 2012,20(5): 963-971
Wang Ya-jing, Shen Jin, Zheng Gang, Liu Wei, Sun Xian-ming. Inversion of dynamic light scattering combining Tikhonov regularization with multi-grid technique[J]. Editorial Office of Optics and Precision Engineering, 2012,20(5): 963-971
王雅静, 申晋, 郑刚, 刘伟, 孙贤明. Tikhonov正则化与多重网格技术相结合的动态光散射反演[J]. 光学精密工程, 2012,20(5): 963-971 DOI: 10.3788/OPE.20122005.0963.
Wang Ya-jing, Shen Jin, Zheng Gang, Liu Wei, Sun Xian-ming. Inversion of dynamic light scattering combining Tikhonov regularization with multi-grid technique[J]. Editorial Office of Optics and Precision Engineering, 2012,20(5): 963-971 DOI: 10.3788/OPE.20122005.0963.
针对单尺度反演方法中存在的精度偏低问题
结合Tikhonov正则化与瀑布型多重网格技术
提出了一种多尺度Tikhonov正则化(ML-TIK)动态光散射反演方法。该方法利用多重网格技术将原反演问题分解到多尺度的网格空间
按着网格从粗到细的顺序
采用单尺度Tikhonov正则化(TIK)对每个子反演问题进行求解
获取颗粒的粒度分布。分别采用TIK和ML-TIK法对噪声水平为0、0.005、0.01的200~650 nm模拟双峰分布颗粒数据进行了反演
结果表明:ML-TIK法的反演结果与理论分布吻合
平滑性更好;相对于TIK法
ML-TIK法最多可减少粒径峰值误差8.19%
粒径反演误差0.448 2;而TIK法在噪声水平为0.005、0.01时
反演结果双峰特征不明显。因此
ML-TIK方法的反演精度更高、抗干扰能力更强。最后
用60 nm与200 nm实测数据的反演结果验证了该结论。
For the low accuracy of single-level inversion methods to dynamic light scattering
a novel Multi-level Tikhonov regularization inversion (ML-TIK) method combining the Tikhonov regularization method with cascadic multi-grid technique was developed. Firstly
this method divided the original problem into several sub-inversion problems with different grid spaces by a multi-grid technique. Then
from the coarsest scale to the finest scale
each sub-inversion problem was inverted by single-level Tikhonov regularization (TIK) method. Finally
the Particle Size Distribution (PSD) was successively obtained by solving several sub-inversion problems. This method effectively reduces the ill-condition of the original equations. At noise levels 0
0.005 and 0.01
the simulation data of 200~650 nm bimodal distribution particles were respectively inverted by the TIK and ML-TIK. The results indicate that the inversion PSD of ML-TIK is more consistent with that of the theoretical one and it has better smoothness. Comparing to TIK
the ML-TIK can reduce the peak value error by 8.19% and relative error by 0.448 2. However
when the noise level is 0.005 and 0.01
the PSD of TIK has not obvious bimodal features. Therefore
the ML-TIK has improved the inversion accuracy and noise immunity. Inversion results of 60 and 200 nm experimental data verify above conclusions.
CHU B, LIU T.Characterization of nanoparticles by scat-tering techniques[J].J.Nanoparticle Res.2000,2,(1):29-41.[2] 杨晖,郑刚,王雅静. 用动态光散射现代谱估计法测量纳米颗粒 [J].光学 精密工程, 2010,18(9):1996-2001. YANG H, ZHENG G, WANG Y J. Measurement of nano-particles by dynamic light scattering based on spectral estimation[J].Opt. Precision Eng.,2010,18(9):1996-2001. (in Chinese).[3] 杨晖,郑刚,张仁杰. 用动态光散射时间相干度法测量纳米颗粒粒径 [J].光学 精密工程, 2011,19(7):1546-1551. YANG H, ZHENG G, ZHANG R J. Measurement of nano-particle sizes by variance of temporal coherence of dynamic light scattering[J]. Opt. Precision Eng., 2011,19(7): 1546-1551. (in Chinese)[4] KOPPEL D E.Analysis of macromolecular polydispersity in intensity correlation spectroscopy:The method of Cumulants [J].Chem Phys,1972,57(11):4814-4820.[5] MCWHIRTER J G, PIKE E R. On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind[J].Phys A:Math Gen, 1978, 11 (9):1729-1745.[6] PROVENCHER S W, CONTIN. A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations[J].Comput Phy Commun, 1982,27(3): 229-242.[7] DAHNEKE B E. Measurement of Suspended partieles by Quasi-Elastie Light Scattering[M]. New York:Wiley Interscience,1983.[8] MORRISON I D, GRABOWSKI E F. Improved techniques for particle size determination by quasi-elastic light scattering[J]. Langmuir, 1985, 1: 496-501.[9] SUN Y F, WALKER J G. Maximum likelihood data inversion for photon correlation spectroscopy[J]. Meas Sci Technol, 2008, 19(11):115-302.[10] ZHU X J, SHEN J, LIU W, et al.. Nonnegative least-squares truncated singular value decomposition to particle size distribution inversion from dynamic light scattering data[J]. Applie Optics,2010, 49(36):6591-6596.[11] 韩秋燕, 申晋, 孙贤明,等. 基于Tikhonov正则参数后验选择策略的PCS颗粒粒度反演方法 [J]. 光子学报, 2009, 38(11):917-2926. HAN Q Y, SHEN J, SUN X M,et al.. A posterior choice strategies of the tikhonov regularization parameter in the inverse algorithm of the photon correlation spectroscopy particle sizing techniques[J]. Acta Photonica Sinica, 2009, 38(11):2917-2926(in Chinese).[12] STUBEN K. A review of algebraic multigrid[J].Journal of Computational and Applied Mathematics, 2001, 128: 281-309.[13] BORNEMANN F, DEUFLHARD P. The cascadic multi-grid method for elliptic problems[J]. Numer Math, 1996, 42(9):917-924.[14] BORNEMANN F, KRAUSE R. Classical and cascadic multigrid methodogicai comparison .Proceedings of the 9th International Conference on Domain Decomposition. New York:John Wiley and Sons,1998[15] BORNEMANN F, DEUFLHARD P. The cascadic multi-grid method . The Eighth International Conference on Domain Decomposition Method for Partial Differential Equations. New York:Wiley and Sons,1997.[16] HANSEN P C. Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems [J]. Numer. Algo, 2007, 46 :189-194.[17] GOLUB G H, HEATH M T, WAHBA G. Generalized cross-validation as a method for choosing a good ridge parameter[J].Technometrics, 1979, 21:215-223.[18] YU A B, STANDISH N. A study of particle size distribution [J]. Power Technol,1990,62(2):101-118.[19] COLEMAN T F, LI Y. An interior trust region approach for nonlinear minimization subject to bounds[J]. SIAM Journal on Optimization,1996,6(2):418-445.[20] 吴杰,李明峰,余腾. 测量数据处理中病态矩阵和正则化方法 [J].大地测量与地球动力学,2010,30 (4):102-105. WU J, LI M , YU T. Ill matrix and regularization method in surveying data processing[J]. Journal of Geodesy and Geodynamics, 2010,30 (4):102-105.(in Chinese)
0
浏览量
319
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构