浏览全部资源
扫码关注微信
1. 浙江师范大学 精密机械研究所, 浙江 金华 321004
2. 吉林大学 机械科学与工程学院, 吉林 长春 130022
3. 浙江师范大学 数理与信息工程学院,浙江 金华 321004
收稿日期:2011-12-12,
修回日期:2012-02-14,
网络出版日期:2012-05-10,
纸质出版日期:2012-05-10
移动端阅览
李征, 万杰, 阚君武, 王淑云, 杨志刚, 程光明. 基于流固耦合作用的压电液压振动俘能器[J]. 光学精密工程, 2012,20(5): 1002-1008
LI Zheng, WAN Jie, KAN Jun-wu, WANG Shu-yun, YANG Zhi-gang, CHENG Guang-ming. Piezo-hydraulic energy harvester based on solid-fluid coupling vibration[J]. Editorial Office of Optics and Precision Engineering, 2012,20(5): 1002-1008
李征, 万杰, 阚君武, 王淑云, 杨志刚, 程光明. 基于流固耦合作用的压电液压振动俘能器[J]. 光学精密工程, 2012,20(5): 1002-1008 DOI: 10.3788/OPE.20122005.1002.
LI Zheng, WAN Jie, KAN Jun-wu, WANG Shu-yun, YANG Zhi-gang, CHENG Guang-ming. Piezo-hydraulic energy harvester based on solid-fluid coupling vibration[J]. Editorial Office of Optics and Precision Engineering, 2012,20(5): 1002-1008 DOI: 10.3788/OPE.20122005.1002.
提出一种基于流固耦合作用的压电液压振动俘能器来实现低频、高强度振动能量回收。介绍了浮能器的系统构成及工作原理并进行了理论及试验研究。理论分析结果表明
压电液压俘能器的性能是由环境振动频率/振动强度、液压缸/压电振子的结构性能参数、流体容积/特性以及系统背压(蓄能器预置压力)等多种要素共同决定的
仅当各要素配置合理时才能实现压电液压俘能器的预期功能。采用外径为60 mm、厚度为0.9 mm的双晶压电振子及外径为16 cm
长度为100 cm液压缸制作了试验样机
并以水为工作介质进行了不同频率/背压/激振器振幅条件下的试验测试。试验结果表明
存在最佳工作频率(8Hz)使压电液压俘能器输出电压最大
且输出电压随系统背压及液压缸振幅的增加而增加。其它条件不变时
0.4 MPa背压下的输出电压是背压0.2 MPa时的1.65倍。
A Piezo-hydraulic Energy Harvester (PHEH) was presented based on solid-fluid coupling vibration to harvest low-frequency and high-level vibration energy
and its structure as well as working principle were introduced. With an established energy-conversion model
the influence factors on the piezo-hydraulic harvester were analyzed. The theoretic results show that the output performance of the PHEH depends on the vibration frequency/level
the structure and size of piezodisc/cylinder
liquid volume/performance
and system backpressure. The desired performance can not be achieved unless the above parameters are matched well. By a piezodisc with a diameter of 60 mm and a thickness of 0.9 mm and a cylinder with a diameter of 16 cm and a length of 100 cm
a PHVI was fabricated and tested by taking water as liquid medium at different frequencies/backpressures/exciter-amplitudes. The test results suggest that there is an optimal vibration frequency (8 Hz) for the PHEH to achieve the maximal output voltage
which rises with the increasing of backpressure and vibration level. In the case of unvaried other parameters
the achieved voltage from the PHEH under 0 .4 MPa is 1.65 times that under 0 .2 MPa.
HARB A. Energy harvesting: State-of-the-art [J]. Renewable Energy, 2011, 36(10): 2641-2654.[2] SAADON S, SIDEK O. A review of vibration-based MEMS piezoelectric energy harvesters [J]. Energy Conversion and Management, 2011, 52(1): 500-504.[3] KHALIGH A, ZENG P, ZHENG C. Kinetic energy harvesting using piezoelectric and electromagnetic technologies-State of the art [J]. IEEE Transactions on Industrial Electronics, 2010, 57(3):850-860.[4] JI H, MA Y, QIU J, et al.. Optimal design of high efficiency piezoelectric energy harvester [J]. Opt. Precision Eng., 2008,16(12):2346-2351.[5] 唐刚,刘景全,马华安,等. 微型压电振动能量采集器的研究进展 [J]. 机械设计与研究, 2010,26(4):61-64. TANG G, LIU J Q, MA H A, et al.. A survey on research of micro piezoelectric vibration energy harvesters [J]. Machine Design and Research, 2010,26(4):61-64. (in Chinese)[6] 季宏丽,马勇,裘进浩,等. 高效压电能量回收系统的优化设计 [J].光学 精密工程,2008,16(12):2346-2351. JI H L, MA Y, QIU J H, et al.. Optimal design of high efficiency piezoelectric energy harvester [J]. Optics and Precision Engineering, 2008, 16(12): 2346-2351. (in Chinese)[7] 王淑云,阚君武,曾平,等. 压电叠堆型自供能液压减振器 中国,201110275849.6 .2011. WANG S Y, KAN J W, ZENG P, . Self-powered piezostack-hydraulic vibration isolator China, 201110275849.6 .2011. (in Chinese)[8] 阚君武, 王淑云,彭少锋,等. 多振子压电发电机的输出特性 [J]. 光学 精密工程, 2011, 19(9): 2108-2116. KAN J W, WANG S Y, PENG S F, et al.. Output performance of piezoelectric generator with multi-vibrators [J]. Opt. Precision Eng., 2011, 19(9): 2108-2116. (in Chinese)[9] NIEZRECKI C, SCHUELLER J K, BALASUBRAMANIAN K. Piezoelectric-based fluid bulk modulus sensor [J]. Journal of Intelligent Material Systems and Structures, 2004, 15: 893-899.[10] TIMOSHENKO S, WOINOWSKYK S. Theory of plates and shells (second edition) [M]. McGraw-Hill Book Company, New York, 1959.
0
浏览量
731
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构