浏览全部资源
扫码关注微信
西安电子科技大学 智能控制与图像工程研究所,陕西 西安 710071
收稿日期:2011-09-19,
修回日期:2011-12-14,
网络出版日期:2012-05-10,
纸质出版日期:2012-05-10
移动端阅览
易盟, 郭宝龙, 张旭. 基于复合Zernike矩相角估计的图像配准[J]. 光学精密工程, 2012,20(5): 1117-1125
YI Meng, GUO Bao-long, ZHANG Xu. Image registration based on complex Zernike moment phase angle estimation[J]. Editorial Office of Optics and Precision Engineering, 2012,20(5): 1117-1125
易盟, 郭宝龙, 张旭. 基于复合Zernike矩相角估计的图像配准[J]. 光学精密工程, 2012,20(5): 1117-1125 DOI: 10.3788/OPE.20122005.1117.
YI Meng, GUO Bao-long, ZHANG Xu. Image registration based on complex Zernike moment phase angle estimation[J]. Editorial Office of Optics and Precision Engineering, 2012,20(5): 1117-1125 DOI: 10.3788/OPE.20122005.1117.
提出了一种基于复合Zernike矩相角估计的图像配准方法。首先
利用尺度不变检测子Harris-laplace检测图像中的兴趣点作为初始特征点
计算以兴趣点为中心、邻域具有尺度不变性的Zernike矩;提出一种鲁棒的相角估计方法
用于估计两个归一化区域的旋转角度值。然后
利用Zernike矩的幅值和相角信息
通过比较每个兴趣点邻域Zernike矩的相似度提取出初始匹配点。最后
提出一种迭代角度修正算法用于精确估计变换参数
并对输入图像进行几何变换后将两幅图像配准。实验结果表明
该算法可在尺度缩放、任意角度旋转以及噪声等复杂条件下实现图像的高精度配准。当旋转角度误差小于20时
图像的平均覆盖率达到94.125%
有效降低了误匹配的概率。
An image registration method based on complex Zernike moment phase angle estimation was proposed. Firstly
the Harris-laplace operator was used to detect interest points in an image
and the interest points were regarded as initial feature points. The Zernike moments defined on the scale normalized interest point neighborhood were computed
and a new robust estimation method for phases was presented to compute the rotation angle between two normalized regions. Then
the magnitude and phase angle information of Zernike moments were combined and used to measure the Euclidean distance between two matching regions. Finally
an iterative refined angle method was proposed to estimate the parameters accurately
and the image registration was finished after the geometric transform of input images. The experimental results show that the proposed algorithm impletments a precise image registration under the scaling
arbitrary rotation and noise. The average coverage percentage achieves 94.125% when the rotation angle error is less than 20?
which reduces the false match rate effectively.
ALI S, REILLY V, SHAH M, et al.. Motion and appearance contexts for tracking and reacquiring targets in aerial videos . IEEE CVPR, 2007: 1-6.[2] 朱娟娟,郭宝龙. 复杂场景中基于变块差分的运动目标检测 [J].光学 精密工程,2011,19(1):183-191. ZHU J J, GUO B L. Moving object detection based on variant block difference in complex scenes[J]. Opt. Precision Eng., 2011,19(1): 183-191.(in Chinese)[3] BARBARA Z, JAN F. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21(11): 977-1000.[4] 龚卫国, 张旋, 李正浩. 基于改进局部敏感散列算法的图像配准 [J].光学 精密工程,2011,19(6):1375-1383. GONG W G, ZHANG X, LI ZH H. Image registration based on extended LSH[J]. Opt. Precision Eng., 2011,19(6): 1375-1383.(in Chinese)[5] MATTHEW B, DAVID G L. Automatic panoramic image stitching using invariant features[J]. International Journal of Computer Vision, 2007, 74(1): 59-73.[6] ZHI L S, ZHANG J P. Remote sensing image registration based on retrofitted SURF algorithm and trajectories generated from lissajous figures[J].Geoscience and Remote Sensing Letters, 2010, 7(3):491-495.[7] DAVID G L. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.[8] BAY H, ESS A, TUYTELAARS T, et al.. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359.[9] 杨占龙, 郭宝龙. 基于兴趣点伪泽尼克矩的图像拼接 [J].中国激光,2007,34(11):1548-1552. YANG ZH L, GUO B L. Image mosaic technique based on pseudo-Zernike moments of interest points[J]. Chinese Journal of Lasers, 2007, 34(11): 1548-1552.[10] JIGNESH S, SUPRAVA P, HEMANT G. Image registration using NSCT and invariant moment[J]. International Journal of Image Processing, 2010, 4(2):119-130.[11] JEROME R, GUILLAUME L, ATILLA B. Improving Zernike moments comparison for optimal similarity and rotation angle retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(4):627-636.[12] KRYSTIAN M, CORDELIA S. Scale &affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1):63-86.[13] SIMON X L, MIROSLAW P. On the accuracy of Zernike moments for image analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12):1358-1364.[14] ZHENGWU Y, TAO F. On the accuracy of image normalization by Zernike moments[J]. Imagevision Computing, 2010, 28(3): 403-413.[15] 覃凤清,何小海,陈为龙,等. 一种图像配准的超分辨率重建 [J].光学 精密工程,2009,17(2):409-416. QIN Q F, HE X H, CHEN W L, et al.. Super-resolution reconstruction method of image registration[J].Opt. Precision Eng., 2009, 17(2): 409-416.(in Chinese)[16] KRYSTIAN M, CORDELIA S. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005, 27(10):1615-1630.
0
浏览量
304
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构