浏览全部资源
扫码关注微信
1. 上海大学 机电工程与自动化学院 上海,200072
2. 哈尔滨工业大学 机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150080
3. 苏州大学 机器人与微系统研究中心,江苏 苏州,215021
收稿日期:2011-12-06,
修回日期:2012-03-01,
网络出版日期:2012-05-10,
纸质出版日期:2012-05-10
移动端阅览
马立, 徐次雄, 欧阳航空, 荣伟彬, 孙立宁. 基于信息融合实现的激光陀螺调腔检测[J]. 光学精密工程, 2012,20(5): 1134-1140
MA Li, XU Ci-xiong, OUYANG Hang-kong, RONG Wei-bin, SUN Li-ning. Detection of laser gyro cavity adjustment using information fusion[J]. Editorial Office of Optics and Precision Engineering, 2012,20(5): 1134-1140
马立, 徐次雄, 欧阳航空, 荣伟彬, 孙立宁. 基于信息融合实现的激光陀螺调腔检测[J]. 光学精密工程, 2012,20(5): 1134-1140 DOI: 10.3788/OPE.20122005.1134.
MA Li, XU Ci-xiong, OUYANG Hang-kong, RONG Wei-bin, SUN Li-ning. Detection of laser gyro cavity adjustment using information fusion[J]. Editorial Office of Optics and Precision Engineering, 2012,20(5): 1134-1140 DOI: 10.3788/OPE.20122005.1134.
考虑激光陀螺调腔人工检测耗时较长、易受干扰
本文建立了激光陀螺自动调腔系统。在分析激光陀螺调腔工艺的基础上
构建了一种由CCD相机和光电倍增管组成的多传感器信息融合体系结构
提出了基于D-S证据理论的激光陀螺调腔检测方法。通过分析计算CCD相机和光电倍增管检测到的信号得出光斑、光阑中心点坐标差值及陀螺损耗值
并由这些信息获得调腔质量的评价函数。然后
根据D-S证据理论对评价函数进行融合处理
分别获得陀螺调腔质量合格与不合格的信度函数
应用最大支持度规则对调腔质量进行综合判断。实验结果显示
基于D-S证据理论的激光陀螺调腔方法检测准确率为91.14%
有效提高了调腔质量
验证了该方法的可行性。
An automatic cavity adjustment system was established to improve the quality of laser gyro cavity adjustment and to overcome the drawbacks of manual detection such as low efficiency and low anti-interference capacity. According to the process of the cavity adjustment
a multi-sensor information fusion architecture was established by a CCD camera and a photomultiplier. A detection method of laser gyro cavity adjustment was proposed based on the D-S evidence theory. By analysis and calculation of the signals detected by the CCD camera and the photomultiplier
the center coordinate difference between facula and diaphragm and the loss value of the laser gyro were obtained and the evaluation function for each cavity adjustment result was deduced by these data. Furthermore
the qualified and unqualified belief functions of the cavity adjustment were obtained
respectively
and the quality of the cavity adjustment was verified based on the maximum support rule. The experimental result indicates that the accuracy of the detection method based on D-S evidence theory is 91.14%
which improves the quality of cavity adjustment effectively and validates the feasibility of the proposed method.
OTMAN B, YUAN X H. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J]. Information Fusion, 2007,8(4):379-386.[2] GUO H Y, LI Z L. A two-stage method to identify structural damage sites and extents by using evidence theory and micro-search genetic algorithm [J]. Mechanical Systems and Signal Processing, 2009, 23(3):769-782.[3] MADHI T, REZA G, REZA E. Knitted fabric defect classification for uncertain labels based on Dempster-Shafer theory of evidence[J]. Expert Systems with Applications, 2011, 38(5):5259-5267.[4] 龚卫国,王林泓,贺莉芳. 基于特征子模式典型相关分析的热释电红外信号识别 [J]. 光学 精密工程, 2011, 19(4):884-891. GONG W G, WANG L H, HE L F. Pyroelectric infrared signal recognition based on feature sub-pattern canonical correlation analysis [J]. Opt. Precision Eng., 2011, 19(4):884-891. (in Chinese)[5] ERVAS E, MPIMPOUDIS A, ANAGNOSTOPOULOS C, et al.. Multisensor data fusion for fire detection [J]. Information Fusion, 2011, 12(3):150-159.[6] GUO K H, LI W L. Combination rule of D-S evidence theory based on the strategy of cross merging between evidences [J]. Expert Systems with Applications, 2011, 38 (10):13360-13366.[7] LIN T CH. Decision-based fuzzy image restoration for noise reduction based on evidence theory [J]. Expert Systems with Applications, 2011, 38(7):8303-8310.[8] AYTUNC P, MEHMET G. Information fusion with dempster-shafer evidence theory for software defect prediction [J]. Procedia Computer Science, 2011, 3:600-605.[9] MOHAMED A B, YVES D S, AHMED F, et al.. A ranking model in uncertain, imprecise and multi-experts contexts: The application of evidence theory [J]. International Journal of Approximate Reasoning, 2011, 52(8):1171-1194.[10] AI L M, WANG J, WANG X L. Multi-features fusion diagnosis of tremor based on artificial neural network and D-S evidence theory [J]. Signal Processing, 2008, 88(12):2927-2935.[11] 马巍. 基于证据理论信息融合的电站锅炉故障诊断 . 北京:华北电力大学 , 2010. MA W.Fault diagnosis of the power plant boiler based on the evidence theory of information fusion . Beijing: North China Electric Power University, 2010. (in Chinese)[12] LAURENCE B, SOPHIE M. Pedestrian crossing detection based on evidential fusion of video-sensors [J]. Transportation Research Part C: Emerging Technologies, 2009, 17(5):484-497.[13] AHMAD O, VALéRIE K, UIF H. Improvement of X-ray castings inspection reliability by using Dempster-Shafer data fusion theory [J]. Pattern Recognition Letters, 2011,32(2):168-180.[14] 陈谋,谭晓宇,姜长生. 基于信息融合的空中红外小目标识别 [J]. 光学 精密工程, 2009, 17(8):2032-2039. CHEN M, TAN X Y, JIANG C SH. IR small target recognition in sky background based on information fusion[J]. Opt. Precision Eng., 2009, 17(8):2032-2039. (in Chinese)[15] LATIFA O, ALEXANDRA D, THIERRY D, et al.. Fault diagnosis in railway track circuits using Dempster-Shafer classifier fusion [J]. Engineering Applications of Artificial Intelligence, 2010, 23(1):117-128.[16] 高晶,孙继银,刘婧,等. 基于区域模糊阈值的前视红外目标识别 [J]. 光学 精密工程, 2011,19(12):3056-3063. GAO J, SUN J Y, LIU J, et al.. FLIR target recognition based on local fuzzy threshold[J]. Opt. Precision Eng., 2011, 19(12):3056-3063. (in Chinese)
0
浏览量
306
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构