浏览全部资源
扫码关注微信
1. 北京航空航天大学 自动化科学与电气工程学院 北京,100191
2. 北京航空航天大学 飞行器控制一体化技术重点实验室 北京,100191
收稿日期:2012-02-08,
修回日期:2012-03-31,
网络出版日期:2012-06-10,
纸质出版日期:2012-06-10
移动端阅览
扈宏杰, 王元哲. 机载光电平台的复合补偿控制方法[J]. 光学精密工程, 2012,20(6): 1272-1281
HU Hong-jie, WANG Yuan-zhe. Composite compensation control scheme for airborne opto-electronic platform[J]. Editorial Office of Optics and Precision Engineering, 2012,20(6): 1272-1281
扈宏杰, 王元哲. 机载光电平台的复合补偿控制方法[J]. 光学精密工程, 2012,20(6): 1272-1281 DOI: 10.3788/OPE.20122006.1272.
HU Hong-jie, WANG Yuan-zhe. Composite compensation control scheme for airborne opto-electronic platform[J]. Editorial Office of Optics and Precision Engineering, 2012,20(6): 1272-1281 DOI: 10.3788/OPE.20122006.1272.
为实现机载光电平台的实时高精度稳定跟踪控制
提出了一种基于改进干扰观测器和模糊逼近的复合自适应补偿控制方法。首先
根据系统的机械结构特点分析了各框架间的运动学耦合关系;考虑到载体扰动的影响
提出了一种基于速度信号的改进干扰观测器结构
并分析了它的工作原理和鲁棒稳定性。然后
针对机械系统中普遍存在的摩擦等干扰现象
设计了基于模糊逼近的复合补偿控制策略以保证系统的跟踪性能。最后
利用Lyapunov稳定性理论证明了系统的全局稳定性和跟踪误差的渐进收敛。实验结果显示
该控制方法具有较高的稳定精度
其跟踪误差可达μrad数量级
表明该方法可以有效地抑制载体扰动的影响并且具有良好的跟踪性能
是可行有效的。
A novel composite compensation control scheme based on an improved Disturbance Observer (DOB) and fuzzy approximation was proposed to achieve the real-time stabilization and high-precision tracking control of an airborne opto-electronic platform. First
the kinematic coupling relationship between different frames was analyzed according to mechanical characteristics of the system. Then
an improved DOB structure based on the velocity signal was proposed to restrain the impact of carrier disturbance
and its basic principle and robust stability were analyzed. Considering the disturbance such as the friction torque that exists in mechanical systems generally
a composite control method with a fuzzy controller was proposed to improve the tracking performance. Finally
the global stability and the asymptotic convergence of the tracking error were proved on the basis of Lyapunov stability theory. Experiment results show that the stabilization accuracy can reach a higher level and the tracking error has been μrad magnitude
which demonstrates that the proposed scheme in this paper can restrain the impact of carrier disturbance and improve the tracking performance effectively.
姬伟.陀螺稳定光电跟踪平台伺服控制系统研究 . 南京:东南大学,2006. JI W. Research on servo control system of gyro stabilization and optical-electronic tracking platform . Nanjing: Southeast University, 2006. (in Chinese)
BO L,HULLENDER D,DERENZO M. Nonlinear induced disturbance rejection in inertial stabilization systems[J]. IEEE Transactions on Control Systems Technology,1998,6(3):421-427.
MOORTY J A R K,MARATHE R,SULE V R.H∞ control law for line-of-sight stabilization for mobile land vehicles[J]. Optical Engineering, 2002,41(11):2935-2944.
JI W,LI Q,XU B, et al.. Adaptive fuzzy PID composite control with hysteresis-band switching for line of sight stabilization servo system[J]. Aerospace Science and Technology, 2011,15(1):25-32.
HILKERT J M,HULLENDER D A. Adaptive control system techniques applied to inertial stabilization systems[J]. SPIE, 1990,1304(190):190-206.
NIE J H,LEE T H. Self-organizing rule-based control of multivariable nonlinear servomechanisms[J]. Fuzzy Sets and Systems, 1997,91(3):285-304.
TAN K C,LEE T H,KHOR E F, et al.. Design and real-time implementation of a multivariable gyro-mirror line-of-sight stabilization platform[J]. Fuzzy Sets and Systems, 2002,128(1):81-93.
LEE T H,GE S S,WONG C P. Adaptive neural network feedback control of a passive line-of-sight stabilization system[J]. Mechatronics, 1998,8(8):887-903.
ANG J H,GOH C K,TEOH E J, et al.. Designing a recurrent neural network-based controller for gyro-mirror line-of-sight stabilization system using an artificial immune algorithm, studies in computational intelligence[J]. Advances in Evolutionary Computing for System Design, 2007,66(1):189-209.
KENNEDY P J,KENNEDY R L. Direct versus indirect line of sight (LOS) stabilization[J]. IEEE Transactions on Control Systems Technology, 2003,11(1):3-15.
HU H J,YU Y J,ZHAN P. A control scheme based on RBF neural network for high-precision servo system[J]. Proceedings of the 2010 IEEE International Conference on Mechanical and Automation, Xi’an, P.R. China, 2010:1489-1494.
王连明.机载光电平台的稳定与跟踪伺服控制 . 长春:长春光学精密机械与物理研究所,2002. WANG L M. Study on stabilization and track control techniques of airborne opto-electronic platform . Changchun:Changchun Institute Academia Sinica of Optics,Fine Mechanics and Physics, 2002. (in Chinese)
KEMPF C J,KOBAYASHI S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table[J]. IEEE Transactions on Control Systems Technology, 1999,7(5):513-526.
刘强,尔联杰,刘金坤. 摩擦非线性环节的特性,建模与控制补偿综述[J]. 系统工程与电子技术,2002,11(1):45-50. LIU Q, ER L J, LIU J K. Overview of characteristics, modeling and compensation of nonlinear friction in servo systems[J]. Systems Engineering and Electronics, 2002,11(1):45-50. (in Chinese)
LEE H S. Robust digital tracking controllers for high-speed/high-accuracy positioning systems . Berkeley: Univ. California, Berkeley, 1994.
刘强.现代高精度数字伺服系统运动控制理论与应用研究 . 北京:北京航空航天大学,2002. LIU Q. Research on motion control theory and application for modern high-precision digital servo system . Beijing: Beihang University, 2002.(in Chinese)
WANG Y F,WANG D H,CHAI T Y. Modeling and control compensation of nonlinear friction using adaptive fuzzy systems[J]. Mechanical Systems and Signal Processing, 2009,23(8):2445-2457.
ZHAO B, HU H J. A new inverse controller for servo-system based on neural network model reference adaptive control[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2009,28(6):1503-1515.
LAI CH Y,LEWIS F L,VENKATARAMANAN V, et.al.. Disturbance and friction compensations in hard disk drives using neural networks[J]. IEEE Transactions on Industrial Electrics, 2010,57(2):784-792.
刘金琨.先进PID控制及其Matlab仿真[M]. 北京:电子工业出版社,2003. LIU J K. Advanced PID Control and Matlab Simulation[M]. Beijing: Electronics Industry Press, 2003. (in Chinese)
0
浏览量
669
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构