浏览全部资源
扫码关注微信
长安大学 信息工程学院,陕西 西安,710064
收稿日期:2011-11-23,
修回日期:2012-02-22,
网络出版日期:2012-07-10,
纸质出版日期:2012-07-10
移动端阅览
尹诗白, 赵祥模, 王卫星. 基于递推遗传的模糊3-划分熵多阈值FISH基因提取[J]. 光学精密工程, 2012,20(7): 1475-1484
YIN Shi-bai, ZHAO Xiang-mo, WANG Wei-xing. Fuzzy 3-partition entropy multilevel threshold approach based on recursive genetic algorithm for extracting FISH-labeled genes[J]. Editorial Office of Optics and Precision Engineering, 2012,20(7): 1475-1484
尹诗白, 赵祥模, 王卫星. 基于递推遗传的模糊3-划分熵多阈值FISH基因提取[J]. 光学精密工程, 2012,20(7): 1475-1484 DOI: 10.3788/OPE.20122007.1475.
YIN Shi-bai, ZHAO Xiang-mo, WANG Wei-xing. Fuzzy 3-partition entropy multilevel threshold approach based on recursive genetic algorithm for extracting FISH-labeled genes[J]. Editorial Office of Optics and Precision Engineering, 2012,20(7): 1475-1484 DOI: 10.3788/OPE.20122007.1475.
针对现有寻优算法存在的重复计算问题
提出了基于递推遗传的模糊3-划分熵多阈值荧光原位杂交(Fluorescence in Situ Hybridization
FISH)基因提取算法来提高用模糊划分熵算法提取多阈值FISH基因的效率。采用迭代验证法确定隶属度函数窗宽
并使用附加边界条件及灰度权重的隶属度函数对图像进行模糊3-划分。为了提高阈值寻优的效率
引入递推算法将模糊熵的计算转化为递推过程
并保存部分不重复的递推结果用于后续的计算
最后采用遗传算法寻优
使得种群个体的计算能使用预存结果快速搜索全局最优阈值。对提取结果与几种常用算法进行了直观比较
并对处理时间、分类概率等性能指标进行了量化分析。对多幅不同类型的仿真人工图像和真实FISH图像的测试表明
处理时间仅为常用算法的1%
错误划分概率小于6.00×10
-2
。提出的算法可以准确
高效地提取FISH基因目标。
A new fuzzy 3-partition entropy approach based on a fast recursive genetic algorithm was proposed to reduce the repeated computations and to improve the processing efficiency in extraction of FISH-labelled (Fluorescence In Situ Hybridization) genes. An iteration validation method was presented to determine the window width of the membership functions and the membership functions considering the boundary conditions and gray weights were selected to perform the fuzzy 3-partition. To improve the efficiency of selecting optimal thresholds
a recursive algorithm was presented to convert the computation of fuzzy entropy to a recursive process. Then
the no-repetitive results of the processing moments were stored for the succeeding genetic algorithm to compute the fitness of each individual. Finally
the optimal thresholds were searched by the genetic algorithm in a high speed. The result of the proposed algorithm was compared to those of the several common algorithms and the classification probability and run time were analyzed as the test criterion of optimal thresholds. By evaluating various types of simulated images and real FISH images
it shows that the run time of the proposed algorithm is 1% that of other common algorithms and the misclassification error is less than 6.00?10
-2
. These results demonstrate that the proposed algorithm is effective for improving the precision and efficiency of extracting FISH-labelled genes.
TANKE H J. Studies of the human genome fluorescent in situ hybridization and image analysis[J]. Biology of Cell, 1991, 93(2): 33-41.
POLETTI E, ZAPPELLI F, RUGGERI A, et al.. A review of thresholding strategies applied to human chromosome segmentation[J]. Computer Methods and Programs in Biomedicine, 2012, 6(2): 121-132.
TAO W B, TIAN J W, JIAN L. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm[J]. Pattern Recognition Letters, 2003, 24(16): 3069-3078.
TAO W B, JIN H, LIU L M. Object segmentation using ant colony optimization algorithm and fuzzy entropy[J]. Pattern Recognition Letters, 2007, 28(7): 788-796.
NANDITA S, AMITAVA C, SUGATA M. An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation[J]. Expert Systems with Applications, 2011, 38(12): 15489-15498.
MACHADO J A T, COSTA A C, QUELHAS M D. Shannon, Rényie and Tsallis entropy analysis of DNA using phase plane[J]. Nonlinear Analysis: Real World Applications, 2011, 12(6): 3135-3144.
MEHDI S, HASSAN S, ARIAA. Minimum entropy control of chaos via online particle swarm optimization method[J]. Applied Mathematical Modelling, 2011, 21(10): 171-195.
TANG Y G, DI Q Y, GUAN X P, et al.. Threshold selection based on fuzzy Tsallis entropy and particle swarm optimization[J]. Neuro Quantology, 2008, 6(4): 412-419.
MACHADO J A T, COSTA A C, QUELHAS M D. Analysis and visualization of chromosome information[J]. Gene, 2011, 49(1): 81-87.
HORNG M H. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation[J]. Expert Systems with Applications, 2011, 38(11): 13785-13791.
PENG H J, WU Z G , ZHONG W X. Fourier expansion based recursive algorithms for periodic Riccati and Lyapunov matrix differential equations[J]. Journal of Computational and Applied Mathematics, 2011, 235(12): 3571-3588.
TANG Y G, MU W W, YING Z, et al.. A fast recursive algorithm based on fuzzy 2-partition entropy approach for threshold selection[J]. Neurocomputing, 2011, 74(17): 3072-3078.
BENABDELKADER S, BOULEMDEN B. Recursive algorithm based on fuzzy 2-partition entropy for 2-level image thresholding[J]. Pattern Recognition, 2005, 38(8): 1289-1294.
MURTHY C A, PAL S K. Fuzzy thresholding mathematical framework, bound functions and weighted moving average technique[J]. Pattern Recognition Letter, 1990, 11(2): 197-206.
周学成,罗锡文,严小龙,等. 基于遗传算法的原位根系CT图像的模糊阈值分割 [J].中国图象图形学报,2009,14(4): 682-687. ZHOU X CH, LUO X W, YAN X L, et al.. A fuzzy thresholding segmentation for plant root CT images based on genetic algorithm[J]. Journal of Image and Graphics, 2009, 14(4): 682-687. (in Chinese)
张怀柱,向长波,宋建中,等. 改进的遗传算法在实时图像分割中的应用 [J].光学 精密工程, 2008,16(2): 334-337. ZHANG H Z, XIANG CH B, SONG J ZH, et al.. Application of improved adaptive genetic algorithm to image segmentation in realtime[J]. Opt. Precision Eng., 2008, 16(2): 334-337. (in Chinese)
RICHARD A. RUSSELL N M A, DAVIA A S, et al.. Segmentation of fluorescence microscopy images for quantitative analysis of cell nuclear architecture[J]. Biophysical Journal, 2009, 96(8): 3379-3389.
GOZDE B, DERYA B, ALP K. An incremental genetic algorithm for classification and sensitivity analysis of its parameters[J]. System with Application, 2011, 38(3): 2609-2620.
0
浏览量
199
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构