浏览全部资源
扫码关注微信
重庆大学 机械传动国家重点实验室,重庆 400044
收稿日期:2012-03-01,
修回日期:2012-04-12,
网络出版日期:2012-07-10,
纸质出版日期:2012-07-10
移动端阅览
米曾真, 谢志江, 陈涛, 楚红雨, 范兵. 重轨图像增强与边缘提取的关键技术[J]. 光学精密工程, 2012,20(7): 1645-1652
MI Zeng-zhen, XIE Zhi-jiang, CHEN Tao, CHU Hong-yu, FAN Bing. Key technology of image enhancement and edge extraction for heavy rail[J]. Editorial Office of Optics and Precision Engineering, 2012,20(7): 1645-1652
米曾真, 谢志江, 陈涛, 楚红雨, 范兵. 重轨图像增强与边缘提取的关键技术[J]. 光学精密工程, 2012,20(7): 1645-1652 DOI: 10.3788/OPE.20122007.1645.
MI Zeng-zhen, XIE Zhi-jiang, CHEN Tao, CHU Hong-yu, FAN Bing. Key technology of image enhancement and edge extraction for heavy rail[J]. Editorial Office of Optics and Precision Engineering, 2012,20(7): 1645-1652 DOI: 10.3788/OPE.20122007.1645.
针对重轨图像两个边缘像素特征不一致
传统边缘算子检测法难以精确提取边缘的问题
提出了一种新的边缘提取方法。该方法利用灰度强对比度拉伸算法对重轨表面和背景进行差异化拉伸
增强边缘信息
削弱背景信息。运用最大方差比算法选取增强后图像的最佳阈值实现二值化。最后
运用递归连通域标识法定位边缘像素坐标
完成图像分割。对随机选取的30幅图像进行分析表明:处理后的图像边缘灰度特征明显增强
有效地抑制了表面纹理及虚假边缘。重轨表面像素宽度波动减少到-0.64%~0.34%。离散预处理算法通过遍历寄存器全局数组
减少分割时间至10.165 s。该方法在抗干扰性、准确性及时效性等方面优于传统边缘算子检测法
适用于在线工业检测系统。
As the two edge pixels of a heavy rail image is not identical
the classical edge operators are difficult to achieve the edge extraction and segmentation. Therefore
this paper proposed a new algorithm to enhance and extract images. A strong contrast stretching algorithm was used to stretch the rail surface and the background differently
enhance the edge information and weaken the background information. Then
the maximum variance method was taken to select the optimal threshold to implement the binarilization. Finally
the recursion connected domain marker algorithm was used to locate the pixel coordinates of edge to achieve the image segmentation. 30 images were chosen to a discretion experiment
and results indicate that the gray features of image edge are enhanced clearly
surface textures and false edges are restrained availably. Moreover
the pixel width fluctuating range is reduced from -0.64% to 0.34%. With the discrete pretreatment algorithm via addressing global array of a register
the segmentation time has been decreased to 10.165 s. The algorithm is better than the classical edge operators in the precision
correctness and the timeliness and is more suitable for on-line detection systems.
魏天斌. 高速铁路发展趋势及武钢重轨生产策略 [J]. 钢铁研究,2005,33(6):52-55. WEI T B. Development trend of high-speed railroad and strategies of wiscos heavy rail production[J]. Research on Iron & Steel, 2005, 33(6):52-55. (in Chinese)
孟佳. 钢轨表面缺陷识别系统的设计与研究 . 成都:西南交通大学 ,2005. MENG J. Design and research of recognition system on railway surface defects .Chengdu:Southwest Jiaotong University, 2005. (in Chinese)
苏兰海,潘爱文,马祥华. 热轧窄带钢模糊边界的精确求解 [J]. 北京科技大学学报,2008,30(3): 307-310. SU L H, PAN A W, MA X H. Exact solution to fuzzy edge of hot rolled narrow strips[J]. Journal of Beijing University of Science and Technology, 2008, 30(3):307-310 . (in Chinese)
张闯. 铁轨缺陷检测系统的算法优化 . 大连:大连海事大学 ,2005. ZHANG CH. Optimization of railroad track flaw inspection system . Dalian:Dalian Maritime University, 2005. (in Chinese)
NOBUYOSHI M, NICOLAS W. Burgers vector determination in deformed perovskite and post-perovskite of CaIrO3using thickness fringes in weak beam dark-field images[J]. Ultramicroscopy,2009, 109(6):683-692.
SUN T H, TSENG C C, CHEN M S. Electric contacts inspection using machine vision [J]. Image and Vision Computing, 2010, 28(6):890-910.
ZUMPANO G, MEO M. A new damage detection technique based on wave propagation for rails[J]. International Journal of Solids and Structures, 2006, 43(5):1023-1046.
王庆香,李迪, 张舞杰,等. 软性电路板金面缺陷的无监督检测 [J]. 光学 精密工程,2010,18(4): 981-987. WANG Q X,LI D,ZHANG W J, et al.. Unsupervised defect detection for gold surface of flexible printed board [J]. Opt. Precision Eng., 2010,18(4):981-987 . (in Chinese)
CHANG J H, FAN K C, LANG Y. Multi-modal gray-level histogram modeling and decomposition[J].Image and Vision Computing,2002,20(3):203-216.
陈涛. 热态重轨表面缺陷在线检测系统关键技术研究 . 重庆:重庆大学 ,2011. CHEN T. The key technology study on the surface defects detection of hot heavy rail .Chongqing:Chongqing University,2011.(in Chinese)
GONZALEZ R C, WOODS R E, EDDINS S L. Digital Image Processing Using MATLAB[M]. Gatesmark Publishing, 2009.
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE transactions on systems, man and cybernetics,1979,9(1):62-66 .
CHUNG K L, TSAI C L. IEEE Transactions on systems, Man and Cybernetics[J]. Applied Mathematics and Computation, 2009,212(2):396-408 .
KESHENG W, EKOW O, KENJI S. Optimizing two-pass connected-component labeling algorithms[J]. Pattern Analysis & Applications, 2009, 12(2):117-135 .
王金涛,刘文耀,路烁. 流域分割算法在细胞图像分割中的应用 [J]. 西南交通大学学报,2002,37(3):227-231. WANG J T, LIU W Y, LU SH. Application of watershed algorithm to cell image segmentation[J]. Journal of Southwest Jiaotong University, 2002, 37(3):227-231 . (in Chinese)
杨永敏,樊继壮,赵杰. 强反射表面缺陷图像预处理 [J]. 光学 精密工程,2010,18(10):2288-2296. YANG Y M, FAN J ZH, ZHAO J. Preprocessing for highly reflective surface defect image[J]. Opt. Precision Eng., 2010, 18(10):2288-2296 . (in Chinese)
0
浏览量
519
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构