浏览全部资源
扫码关注微信
1. 中国科学院 研究生院 北京,100039
2. 中国科学院 光电技术研究所,四川 成都 610209
收稿日期:2011-12-22,
修回日期:2012-03-15,
纸质出版日期:2012-08-10
移动端阅览
聂瑞杰, 徐智勇, 张启衡, 王华闯, 程华. SiPM阵列电子特性建模和三维测深仪前端电子学优化[J]. 光学精密工程, 2012,(8): 1661-1668
NIE Rui-jie, XU Zhi-yong, ZHANG Qi-heng, WANG Hua-chuang, CHENG Hua. Model of electrical characteristics of SiPM array and optimization of front-end design for three-dimensional depth sounder[J]. Editorial Office of Optics and Precision Engineering, 2012,(8): 1661-1668
聂瑞杰, 徐智勇, 张启衡, 王华闯, 程华. SiPM阵列电子特性建模和三维测深仪前端电子学优化[J]. 光学精密工程, 2012,(8): 1661-1668 DOI: 10.3788/OPE.20122008.1661.
NIE Rui-jie, XU Zhi-yong, ZHANG Qi-heng, WANG Hua-chuang, CHENG Hua. Model of electrical characteristics of SiPM array and optimization of front-end design for three-dimensional depth sounder[J]. Editorial Office of Optics and Precision Engineering, 2012,(8): 1661-1668 DOI: 10.3788/OPE.20122008.1661.
从硅光电倍增管(SiPM)单个微元的微等离子体电子行为模型出发
分析了SiPM的电子特性
提出了SiPM前端电子学最优设计方案。阐述了SiPM的工作机理
给出了SiPM的电子行为模型
分析了SiPM应用于水下三维测深的优势。根据水下测深信号的回波特性
设计了高速、高带宽的前置放大器
并对前置放大器进行了交流分析和瞬态分析。 结果表明
该前置放大电路在带宽内具有很高的增益平坦度
相位裕度大于60°
基本保证了信号的完整性
同时保持了激光脉冲的波形。分析和测试结果表明
该探测器和电路设计方案完全能够满足水下三维测深的需要。
The electrical characteristics of Silicon Photomultipliers(SiPMs) were analyzed on the basis of the behavior model of a micro plasma electron in the SiPMs
and an optimum design scheme for the SiPM front was proposed. The working principles of SiPM arrays were introduced
the electrical behavior model of a SiPM was given
and the advantage of SiPM for the underwater three-dimensional depth sounder was discussed. Based on the echoing characteristics of the underwater depth sounder
a high speed
high bandwidth preamplifier was designed
and an alternating current analysis and a transient analysis were performed. Results show that the preamplifier circuit has much high gain flatness in the bandwidth and the phase margin is more than 60?
which ensures the integrity of signals and the waveforms of laser pulse signals. Analysis and test results indicate that the SiPM arrays and the circuit design can satisfy the requirement of underwater three-dimensional depth sounder
and can improve the target acquisition performance of the laser underwater imaging systems.
BUZHAN P,DOLGOSHEIN B. Silicon photomultiplier and its possible applications [J]. Nuclear Instruments and Methods in Physics Research,2003,504:48-52.
GOLOVINA V,SAVELIEV V. Novel type of avalanche photo detector with Geiger mode operation[J]. Nuclear Instruments and Methods in Physics Research,2004,518:560-564.
STEWART A G, SAVELIEV V. Performance of 1 mm2 silicon photomultiplier [J]. IEEE Journal of Quantum Electronics, 2008,44(2):157-164.
FINOCCHIARO P,PAPPALARDO A. Characterization of a novel 100-channel silicon photomultiplier-part I:noise[J]. IEEE Transactions on Electron Devices, 2008,55(10):2757-2764.
FINOCCHIARO P, PAPPALARDO A. Characterization of a novel 100-channel silicon photomultiplier-part II: charge and time [J]. IEEE Transactions on Electron Devices, 2008,55(10):2765-2773.
PETASECCA M,ALPAT B. Thermal and electrical characterization of silicon photomultiplier[J]. IEEE Nuclear Science Symposium Conference Record, 2007,24(124):1275-1278.
STEWART A G,GREENE O'SULLIVAN E, et al.. Study of the properties of new SiPM Detectors [J]. SPIE, 2006,6119:61190A.
RENKER D. Geiger-mode avalanche photodiodes, history, properties and problems[J]. Nuclear Instruments and Methods in Physics Research,2006,A(567):48-56.
GEORGIEVSKYA E A, KLEMIN S N. The solid-state silicon photomultiplier for a wide range of applications [J]. SPIE, 2003,5126:37-42.
ERAERDS P,LEGR M. SiPM for fast photon-counting and multi-photon detection [J]. Optics Express, 2007,15(22):14539-14549.
OTTE A N,BARRAL J. A test of silicon photomultipliers as readout for PET[J]. Nuclear Instruments and Methods in Physics Research,2003,504:48-52.
LLOSG,NICOLA B. Energy and timing resolution studies with silicon photomultipliers (SiPMs) and 4-Pixel SiPM matrices for PET[J]. IEEE Transactions on Nuclear Science, 2009,56(3):543-548.
PESTOTNIK R,DOLENEC R. Silicon photomultiplier as a detector of cherenkov photons[J]. IEEE Nuclear Science Symposium Conference Record, 2007, N41(3):2093-2096.
DHULLA V,CHENG L. Silicon photomultiplier: detector for highly sensitive fluorescence signals . Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Phonotic Applications Systems Technologies, 2008.
SON K T, LEE C C. Multiple-target laser range finding receivers using silicon photomultiplier arrays[J].IEEE Electronic Components and Technology Conference, 2009:2131-2136.
HAITZ R H. Model for the electrical behavior of a microplasma[J]. Journal of Applied Physics, 1964,35(5):1370-1376.
COVA S,GHIONI M. Avalanche photodiodes and quenching circuits for single-photon detection[J]. Applied Optics,1996,35(12):1956-1976.
CORSI F,DRAGONE A. Modeling a silicon photomultiplier (SiPM) as a signal source for optimum front-end design[J]. Nuclear Instruments and Methods in Physics Research, 2007,572:416-418.
SEIFERT S, SCHAART D R. High bandwidth preamplifier for SiPM-Based TOF PET scintillation detectors[J]. IEEE Nuclear Science Symposium Conference Record,2008,NM1(2):1616-1619.
STEWART A G, SAVELIEV V. Performance of 1-mm2 silicon photomultiplier[J]. IEEE Journal of Quantum Electronics,2008,44(2):157-164.
DUNTLEY S Q. Light in the sea[J]. Journal of Optical Society of America, 1963,53:214-233.
GILBERT G D. Deep sea light attenuation measurements at 2 000 m depth [J].NOTS Technical Publication, 1965.
0
浏览量
172
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构