浏览全部资源
扫码关注微信
辽宁大学 物理学院,辽宁 沈阳,110036
收稿日期:2012-05-29,
修回日期:2012-07-06,
纸质出版日期:2012-08-10
移动端阅览
吴新杰, 黄国兴, 王静文. 粒子滤波算法在ECT图像重建中的应用[J]. 光学精密工程, 2012,(8): 1824-1830
WU Xin-jie, HUANG Guo-xing, WANG Jing-wen. Application of particle filtering algorithm to image reconstruction of ECT[J]. Editorial Office of Optics and Precision Engineering, 2012,(8): 1824-1830
吴新杰, 黄国兴, 王静文. 粒子滤波算法在ECT图像重建中的应用[J]. 光学精密工程, 2012,(8): 1824-1830 DOI: 10.3788/OPE.20122008.1824.
WU Xin-jie, HUANG Guo-xing, WANG Jing-wen. Application of particle filtering algorithm to image reconstruction of ECT[J]. Editorial Office of Optics and Precision Engineering, 2012,(8): 1824-1830 DOI: 10.3788/OPE.20122008.1824.
针对电容层析成像技术(ECT)的图像重建质量精度较低的问题
提出了一种基于粒子滤波的ECT图像重建方法。首先
分析了ECT图像重建基本原理
以系统状态估计的方式描述了ECT图像重建最优解的搜索过程
并建立了状态空间模型。然后
以线性反投影(LBP)算法的图像重建结果作为初始状态
利用测量信息对从状态空间中获取的随机样本进行最优加权
以获得重建图像的最小方差估计。最后
对5种不同的流型进行了仿真实验。实验结果表明
利用本文方法获得的重建图像误差平均值为42.93%
相关系数平均值为0.813 9
比LBP算法、Landweber迭代算法和IMNSNOF算法得到的相应指标要好。本文方法是一种有效、精度较高的ECT图像重建方法
为ECT图像重建技术提供了新的途径和手段。
For the low accuracy of image reconstruction in Electrical Capacitance Tomography (ECT)
a image reconstruction method for the ECT was proposed based on the particle filter algorithm. Firstly
the principle of image reconstruction of the ECT was analyzed. Then
the search process of the optimal solution for image reconstruction of the ECT was described as a system state estimation process
and a state space model was established. Furthermore
to obtain the minimum variance estimation of image reconstruction
the image reconstruction result of Linear Back Projection (LBP) algorithm was taken as the initial state
and the optimal weights of random samples obtained from the state space were calculated by the measured information. Finally
the simulation experiments with five different flow regimes were performed. The experiment results show that the average image error of reconstruction results by proposed method is 42.93%
and the average correlation coefficient with the original image is 0.813 9
which is much better than corresponding indicators obtained by LBP algorithm
Landweber iterative algorithm and IMNSNOF algorithm. In conclution
the image reconstruction method with high efficiency and accuracy can provide a new way for ECT research.
陈宇,高宝庆,张立新,等. 基于加权奇异值分解截断共轭梯度的电容层析图像重建[J]. 光学 精密工程, 2010,18(3):701-707. CHEN Y, GAO B Q, ZHANG L X, et al.. Image reconstruction based on weighted SVD truncation conjugate gradient algorithm for electrical capacitance tomography [J]. Opt. Precision Eng., 2010,18(3):701-707. (in Chinese)
LEI J, LIU S, LI Z H, et al.. A multi-scale image reconstruction algorithm for electrical capacitance tomography [J]. Applied Mathematical Modelling, 2011, 35(6):2585-2606.
胡士强,敬忠良. 粒子滤波算法综述[J]. 控制与决策,2005,20(4):361-365. HU S Q,JING Z L. Overview of particle filter algorithm [J]. Control and Decision, 2005,20(4):361-365.(in Chinese)
王国良,刘金国. 基于粒子滤波的多自由度运动目标跟踪[J]. 光学 精密工程,2011,19(4):864-869. WANG G L, LIU J G. Moving object tracking with multi-degree-of-freedom based on particle filters [J]. Opt. Precision Eng., 2011,19(4):864-869.(in Chinese)
龚俊亮,何昕,魏仲慧,等. 采用改进辅助粒子滤波的红外多目标跟踪[J]. 光学 精密工程,2012,20(2):413-421. GONG J L, HE X, WEI Z H, et al.. Multiple infrared target tracking using improved auxiliary particle filter [J]. Opt. Precision Eng., 2012,20(2):413-421.(in Chinese)
LOPES H F, TSAY R S. Particle filters and Bayesian inference in financial econometrics [J]. Journal of Forecasting, 2011,30(1):168-209.
DUAN Z H, FU M, CAI Z X, et al.. An adaptive particle filter for mobile robot fault diagnosis [J]. Journal of Central South University of Technology, 2006,13(6):688-693.
肖延国, 魏建明, 邢涛. 分布式Unscented粒子滤波跟踪[J]. 光学 精密工程,2009,17(7):1707-1713. XIAO Y G, WEI J M, XING T, et al.. Target tracking using distributed Unscented particle filter in sensor network [J]. Opt. Precision Eng., 2009,17(7):1707-1713.(in Chinese)
肖宿,韩国强. 基于变量分离和加权最小二乘法的图像复原[J]. 计算机应用研究,2012,29(4):1584-1587. XIAO S, HAN G Q. Image restoration based on variable splitting and weighted least squares [J]. Application Research of Computers, 2012,29(4):1584-1587.(in Chinese)
SAEIDI S. Modified hybrid steepest-descent methods for variational inequalities and fixed points [J]. Mathematical and Computer Modelling, 2010,52(1):134-142.
WU L, LU F X. Dynamic resampling particle filter adaptive to changes in system model [J]. Journal of Control Theory and Applications, 2011,9(4):584-588.
夏桂梅,曾建潮. 一种基于轮盘赌选择遗传算法的随机微粒群算法[J]. 计算机工程与科学,2007,29(6):51-54. XIA G M, ZENG J C. A stochastic particle swarm optimization algorithm based on the genetic algorithm of roulette wheel selection [J]. Computer Engineering & Science, 2007,29(6):51-54.(in Chinese)
刘靖,徐文忠,姜凡,等. 一种测量多相流流型的ECT图像重建算法[J]. 工程热物理学报,2011,32(4):602-604. LIU J, XU W Z, JIANG F, et al.. An image reconstruction algorithm to testing flow patterns of multiphase flow for electrical capacitance tomography [J]. Journal of Engineering Thermophysics, 2011,32(4):602-604.(in Chinese)
彭黎辉,陆耿,杨五强. 电容成像图像重建算法原理及评价[J]. 清华大学学报:自然科学版,2004,44(4):478-483. PENG L H, LU G, YANG W Q. Image reconstruction algorithms for electrical capacitance tomography: state of the art [J]. Journal of Tsinghua University:Science and Technology,2004,44(4):478-483.(in Chinese)
0
浏览量
619
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构