浏览全部资源
扫码关注微信
1. 国防科技大学 光电科学与工程学院,湖南 长沙,410073
2. 中国洛阳电子装备试验中心,河南 洛阳,471003
收稿日期:2012-03-31,
修回日期:2012-05-23,
纸质出版日期:2012-09-10
移动端阅览
杨昊东, 梁冬明, 岳寰宇, 范汉伟, 刘立武. 环形激光器双光路椭圆度测量系统[J]. 光学精密工程, 2012,20(9): 1913-1921
YANG Hao-dong, LIANG Dong-ming, YUE Huan-yu, FAN Han-wei, LIU Li-wu. Ellipticity measurement system with double beam paths for ring laser gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 1913-1921
杨昊东, 梁冬明, 岳寰宇, 范汉伟, 刘立武. 环形激光器双光路椭圆度测量系统[J]. 光学精密工程, 2012,20(9): 1913-1921 DOI: 10.3788/OPE.20122009.1913.
YANG Hao-dong, LIANG Dong-ming, YUE Huan-yu, FAN Han-wei, LIU Li-wu. Ellipticity measurement system with double beam paths for ring laser gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 1913-1921 DOI: 10.3788/OPE.20122009.1913.
针对通过测量输出光椭圆度对环形激光器进行调腔的要求
研究并建立了环形激光器双光路椭圆度测量系统。计算分析了无源环形腔对S线偏光和P线偏光的频率响应特性
得出S线偏光谐振峰频率特性更适于无源环形腔的稳频。采用S线偏光作为外部输入光来提高稳频精度
搭建了环形激光器双光路稳频与测量系统。环形激光器稳频系统在10 s内就能完成稳频
稳频效率高
稳频后光强波动幅度为1.8%。提出的椭圆度测量方法使椭圆度变化幅度约为0.65%
减小了光强波动对测量精度的影响。实验显示
构建的测量系统可满足椭圆度测量的要求。
On the basis of the requirements of cavity adjustment completed by measurement ellipticity
an ellipticity measurement system with double beam paths was researched for adjusting the cavity of a ring gyro laser. The frequency response characteristics of a square ring resonator to the S line polarized light and P line polarized light were analyzed
and the S line polarized light was chosen to stabilize the frequency of a positive resonant cavity. By inputting the S polarized beam to improve the frequency stability accurately
a frequency stabilization system and a ellipticity measurement system with double beam paths were established. By utilizing the new frequency-stabilization system and measurement methods
the frequency stabilization of the system can be realized in 10 s and the stabilization accuracy is better than 1.8%. Furthermore
the fluctuation of ellipticity has been 0.65% by the proposed method
which reduces the effect of light fluctuation on the measurement accuracy. In conclusion
the proposed system meets the needs of ellipticity measurement.
CHOW W W, GEA-BANACLOCHE J, PEDROTTI L M, et al.. The ring laser gyro[J]. Rev. Mod. Phys., 1985, 57:67-72.[2] SIEGMAN A E. Laser beams and resonators: beyond the 1960s [J]. IEEE Journal of Special Topics in Quantum Electronics, 1999, 21:553-559.[3] SMITH A. Distortion-induced magnetic field bias in the square ring laser [J]. Proceedings of SPIE Technical Symposium East, 1983, 16:412-416.[4] MARTIN J. Out-of-plane laser gyro configurations and magnetic biases [J]. Proceedings of SPIE Physics of Optical Ring Gyros, 1984, 22:478-482.[5] MARTH J. Non-planar gyros and magnetic biases[J]. Proceedings of SPIE Physics of Optical Ring Gyros, 1984, 24: 487-491.[6] SHENG SH CH. Optical-axis perturbation singularity in an out-of-plane ring resonator[J]. Opt. Lett., 1994, 19:673-679.[7] COTE L G, OAKS T. System for reducing the sensitivity of a ring laser gyro to changes in a magnetic field: U.S. Patent 4,698,823. March 21, 1987.[8] GOLYAEV A Y D. DMITRIEV V G. Ring gas lasers with magno-optical control for laser gyroscopy (invited paper) [J]. Quantum Electronics, 2000, 30:327-330.[9] MOORE H, DURANCE D. Method and apparatus for planar alignment of a ring laser gyroscope for minimum magnetic bias sensitivity: U.S. patent 4 850 708. July25, 1989.[10] 杨昊东,袁杰,王立涛. 轻微非共面腔的应力作用研究[J]. 应用光学,2011,32(4):641-645. YANG H D, YUAN J, WANG L T. Stress effect of output mirror in slightly nonplanar resonators [J]. Journal of Applied Optics, 2011, 32(4):641-645.(in Chinese)[11] BORN M, WOLF E. Principles of Optics [M] Beijing: Publishing House of Electronics Industry, 2009.[12] BAXTER T D, SAITO T T, SHAW G L. Mode matching for a passive resonant ring laser gyroscope[J]. Applied Optics, 1983, 22:16.[13] SAVEH M R, BILGER H R, HABIB T. Optical resonator with an external source: excitation of the Hermite-Gaussian modes[J]. Applied Optics, 1985, 24:22.[14] PAXTON, LATHAM W P. Ray matrix method for the analysis of optical resonators with image rotation[J]. Proc. Soc. Photo-Opt. Instrum. Eng., 1985, 554:159.[15] YUAN J, LONG X W, LIANG L M, et al.. Nonplanar ring resonator modes: generalized Gaussian beams[J]. App. Opt., 2007, 46:133.
0
浏览量
243
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构