浏览全部资源
扫码关注微信
1. 哈尔滨工程大学 机电工程学院,黑龙江 哈尔滨,154001
2. 天津大学 精密测试技术及仪器国家重点实验室 天津市微纳制造技术工程中心 天津,300072
3. 航天科工哈尔滨风华有限公司,黑龙江 哈尔滨,154001
收稿日期:2012-04-17,
修回日期:2012-05-30,
纸质出版日期:2012-09-10
移动端阅览
刘运凤, 荆君涛, 李占杰. 旋转超声磨削加工中刀具结合剂类型与加工性能的关系[J]. 光学精密工程, 2012,20(9): 2021-2028
LIU Yun-feng, JING Jun-tao, LI Zhan-jie. Relationship between bond patterns of tools and working performance in rotary ultrasonic grinding[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 2021-2028
刘运凤, 荆君涛, 李占杰. 旋转超声磨削加工中刀具结合剂类型与加工性能的关系[J]. 光学精密工程, 2012,20(9): 2021-2028 DOI: 10.3788/OPE.20122009.2021.
LIU Yun-feng, JING Jun-tao, LI Zhan-jie. Relationship between bond patterns of tools and working performance in rotary ultrasonic grinding[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 2021-2028 DOI: 10.3788/OPE.20122009.2021.
实验分析了硬脆材料旋转超声磨削过程中刀具结合剂类型对加工性能的影响以便提高加工精度和加工表面的完整性。首先
采用能谱分析研究了铁基、陶瓷基和青铜基3种超声振动刀具中结合剂与金刚石颗粒的把持形式
并根据相同加工工艺条件下刀具磨损形式确定了把持力大小。然后
结合超声振动刀具特性
通过旋转超声磨削加工实验研究刀具结合剂类型与切削力、刀具磨损量、加工表面完整性的关系
并对实验结果进行了分析。实验结果表明:相对于陶瓷基和青铜基结合剂超声振动刀具
铁基结合剂超声振动刀具把持力最大
Z
轴切削力平均值最小(为46.8 N);加工18 000 mm
3
材料后
刀具轴向磨损量最小(为0.1 mm);而陶瓷基结合剂超声振动刀具加工表面质量最好
表面粗糙度最大值为21.79 m。结果证实铁基超声振动刀具适用于粗加工
陶瓷基超声振动刀具则适用于精加工。
For improving the machining precision and surface integrity of hard and brittle materials in rotary ultrasonic grinding
the influence of bond patterns of tools on working performance was analyzed. First
the bonding patterns between diamond particles and bonds in ceramics-bonded
iron-bonded and bronze-bonded tools were investigated by energy spectral analysis
and bonding strength was confirmed according to the tool wear of the same process parameters. Based on results above and the characteristics of ultrasonic vibration tool
the relationship between bond patterns and cutting force
tool wear
surfaces integrity was studied by rotary ultrasonic grinding machining experiments. Experimental results indicate that average cutting force in
Z
axis is 46.8 N and the tool wear of after removing 18 000 mm
3
is 0.1 mm by iron-bonded ultrasonic vibration tool
they are smaller than those of ceramics-bonded and bronze-bonded tools. However
the ceramics-bonded ultrasonic vibration tool is the best one
and its surface roughness is 21.79 m. These results prove that the iron-bonded ultrasonic vibration tool is suitable for rough maching and the ceramics-bonded ultrasonic vibration tool is favourable to finish maching.
LI Z C, JIAO Y, DEINES T W, et al.. Rotary ultrasonic machining of ceramic matrix composites: feasibility study and experiments[J]. International Journal of Machine Tools & Manufacture, 2005,45:1402-1411.[2] YA G, QIN H W, YANG S C, et al.. Analysis of the rotary ultrasonic machining mechanism[J]. Journal of Materials Processing Technology,2002,129:182-185.[3] 葛英飞,徐九华,杨辉. SiCp/Al复合材料的超精密车削试验[J]. 光学 精密工程, 2009,17(7):1621-1629. GE Y F, XU J H, YANG H. Experiments of ultra- precision turning of SiCp/Al composites[J]. Opt. Precision Eng., 2009, 17(7): 1621-1629. (in Chinese)[4] 侯永改,邹文俊,肖福仁,等. 烧结方式对陶瓷结合剂金刚石磨具性能影响的研究[J]. 金刚石与磨料磨具工程,2008,3:39-42. HOU Y G, ZOU W J, XIAO F R, et al.. Effect of sintering manner on performance of vitrified bond diamond tools[J]. Diamond&Abrasives Engineering, 2008,3:39-42.[5] 王立江,韩荣久,马文生. 人造多晶金刚石刀具加工表面微观纹理的实验研究[J]. 光学 精密工程, 1995,3(3):67-72. WANG L J,HAN R J, MA W SH. Experimental research for surface micro texture manufactured with PCD tool[J]. Opt. Precision Eng., 1995, 3(3): 67-72. (in Chinese)[6] LIU J H, PEI Z J, FISHER G R. Grinding wheels for manufacturing of silicon wafers: a literature review[J]. International Journal of Machine Tools and Manufacture,2007,47(1):1-13.[7] JACKSON M J. Fracture dominated wear of perfectly sharp abrasive grinding wheels[J]. Journal of Engineering Tribology,2002,218(3):225-235.[8] DROZDA T J, WICK C. Tool and manufacturing engineers handbook. Michigan:Society of Manufacturing Engineers, 1983.[9] MIYAZAKI M, ONOSE H, IIDA N, et al.. Determination of residual double bonds in resin dentin interface by Raman spectroscopy[J]. Dent. Mater.,2003,19 (3):245-251.[10] FAN F, TANG W, LIU S, et al.. An effort to enhance adhesion of diamond coatings to cemented carbide substrates by introducing Si onto the interface[J]. Surface and Coatings Technology,2006,200(24):6727-6732.[11] 宁春旭,肖乐银,王进保,等. 金刚石涂附磨具用树脂结合剂的性能评价探讨[J]. 超硬材料工程,2011,23(1):13-17. NING CH X,XIAO L Y,WANG J B, et al.. Performance evaluation for resin bond of coated diamond tools[J].Superhard Material Engineering,2011,23(1),13-17. (in Chinese)[12] BRIDWELL H C, APPL F C. A study of "Free Cutting" with diamond saws[J].Industrial Diamond Review,1974,2:51-53.[13] 栗正新,杨雪峰,邓相荣,等. 陶瓷结合剂对金刚石颗粒把持力检测的研究[J].超硬材料工程,2010,22(5):5-7. LI ZH X, YANG X F, DENG X R, et al..Research on diamond holding strength of ceramic matrix[J]. Superhard Material Engineering,2010,22(5):5-7. (in Chinese)[14] 汤东华,洪跃生. 钴基结合剂对金刚石把持力的研究[J]. 华侨大学学报(自然科学版),1994,15(3):353-357. TANG D H,HONG Y SH.A study on the rerention of cobalt base bonding agent to diamond[J].Journal of Huaqiao University(Natural Science),1994,15(3):353-357. (in Chinese)[15] 张宇航. 超硬材料磨削工具用金属陶瓷复合结合剂研究.天津:天津大学,2005. ZHANG Y H. The research of cermets bonds of super-hard abrasive grinding tools. Tianjin: Tianjin University, 2005. (in Chinese)[16] ZENG W M, LI Z C, PEI Z J. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics [J]. Machining Tools&Manu - facture,2005,45:1468-1473.[17] 葛英飞,徐九华,傅玉灿. 高速铣削SiCp/Al复合材料时聚晶金刚石刀具的磨损机理[J]. 光学 精密工程,2011,19(12): 2908-2918. GE Y F,XU J H,FU Y C. Wear mechanisms of PCD tool in high-speed milling of SiCp/Al composis[J]. Opt. Precision Eng., 2011, 19(12): 2908-2918. (in Chinese)[18] 任敬心,康仁克,史兴宽. 难加工材料的磨削 [M].北京:国防工业出版社,1999. REN J X, KANG R K, SHI X K. Grinding of Difficult-to-cut Materials [M].Beijing: National Defense Industry Press, 1999. (in Chinese)[19] LIU Y F, ZHAO H, JING J T. Research on material removal rate in rotary ultrasonic grinding machining[J].I.J.Nano-mafacturing, 2011,7(2):158-168.[20] ZHANG W, SUBBASH G. An elastic-plastic-cracking model for finite element analysis of indention cracking in brittle materials[J].International Journal of Solids and Structures, 2001, 38:5893-5913.
0
浏览量
695
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构