浏览全部资源
扫码关注微信
1. 吉林大学 机械科学与工程学院,吉林 长春,130025
2. 吉林化工学院 机电工程学院,吉林 吉林,132022
3. 东北电力大学 机械工程学院,吉林 吉林,132012
收稿日期:2012-05-08,
修回日期:2012-06-11,
纸质出版日期:2012-09-10
移动端阅览
接勐, 刘焱, 谢海峰, 杨志刚, 杨鲁义. 压电驱动共振式高频疲劳试验机构的设计与实验[J]. 光学精密工程, 2012,20(9): 2029-2034
JIE Meng, LIU Yan, XIE Hai-feng, YANG Zhi-gang, YANG Lu-yi. Design and experiment of piezoelectric resonance high frequency fatigue testing machine[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 2029-2034
接勐, 刘焱, 谢海峰, 杨志刚, 杨鲁义. 压电驱动共振式高频疲劳试验机构的设计与实验[J]. 光学精密工程, 2012,20(9): 2029-2034 DOI: 10.3788/OPE.20122009.2029.
JIE Meng, LIU Yan, XIE Hai-feng, YANG Zhi-gang, YANG Lu-yi. Design and experiment of piezoelectric resonance high frequency fatigue testing machine[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 2029-2034 DOI: 10.3788/OPE.20122009.2029.
针对在小振幅、高频受力工况下微小与硬脆材料构件的疲劳检测
提出利用压电振子(PZT、PLZT或PMN)作为高频疲劳试验机构的驱动力源
并利用系统共振方法设计高频疲劳试验机构。首先
介绍压电共振式疲劳试验机构的工作原理
建立了动力学模型
获得了系统的动态特性。然后
设计和制作了样机。最后
利用样机测量了作用在试件上的动载荷。实验结果表明:改变输入交流电压幅值(100~250 V)和板弹簧厚度(1.1~0.6 mm)
可施加在试件上的动载荷为24.7~99.2 N。本文制成的样机适用于测试动载荷在为24.7~99.2 N
且在小振幅、高频受力工况下试件的拉伸和弯曲疲劳性能。
To get fatigue properties of the small and hard brittle components working at conditions of little amplitudes and high frequency forces
this paper presents a novel kind of resonance and high frequency fatigue testing machine driven by a piezoelectric vibrator (PZT、PLZT or PMN). First
the working principle of the piezoelectric resonance and high frequency fatigue testing machine was introduced
and the dynamic model of the machine was established and its systemic dynamic characteristics were obtained. Then
a prototype was designed and produced. Finally
the dynamic load on the specimen was measured by the prototype. The results indicate that the dynamic load on the specimen is 24.7-99.2 N by changing the AC voltage amplitude (100-250 V) and the thickness of the plate spring (1.1-0.6 mm). The prototype designed in this paper is suitable for the tensile and bending fatigue testing under conditions of little amplitudes and high frequency forces with the dynamic load mentioned above.
李跃光, 姬战国. 国内高频疲劳试验机的技术现状及其发展[J]. 实验技术与试验机, 2006, 1: 1-4. LI Y G, JI ZH G. The technical present situation and development of China's domestic high frequency fatigue testing machines[J]. Test Technology and Testing Machine, 2006, 1: 1-4. (in Chinese)[2] 神谷秀博,高津学,大矢宽二. 日本陶瓷学会论文集, 2008, 109(5): 456-463. KAMIYA, HIDEHIRO. Symposium of Japan ceramics academic conference.2008, 109(5): 456-463.(in Japanese)[3] 赵彦如. 蜻蜓膜翅结构特征和纳米力学行为及仿生分析.长春:吉林大学, 2007. ZHAO Y R. Structural characters, nanomechanical behaviors and biomimetic analysis of dragonfly membranous wing. Changchun: Jilin University, 2007.(in Chinese)[4] TOMMY J G, JEREMY S, et al.. Development of a novel vibration-based fatigue testing methodology[J]. International Journal of Fatigue, 2004, 26: 477-486.[5] LEE S B. Stress analysis and design for a structural fatigue testing machine[J]. Journal of Mechanical science and Technology, 1991, 5(2): 115-124.[6] 通佟玲,张本华,杨玉芬. 疲劳试验研究进展[J]. 实验室科学,2006, 4: 53-55. TONG T L, ZHANG B H, YANG Y F. Research development of fatigue test [J]. Laboratory Science, 2006,4: 53-55.(in Chinese)[7] UWE H, PETRA S. Nondestructive monitoring of fatigue damage evolution in austenitic stainless steel by positron-lifetime measurements[J]. Physical Review. B, 2004, 69(9): 94-110.[8] KOHJI M, YOSHIHIRO M, KENJIRO K. The influence of vacuum on fracture and fatigue behavior in a single aramid fiber[J]. International Journal of Fatigue, 2000, 22: 757-765.[9] BUTLE J E, KEATING J. Preliminary data derived using a flexural cyclic loading machine to test plain and fibrous concrete[J]. Materials and Structures, 1981, 14(1): 25-33.[10] PAVEL M, CHAPLYA, MILAN M, et al..Durability properties of piezoelectric stack actuators under combined electromechanical loading[J].Journal of applied physics, 2006, 100: 111-124.[11] WANG H,ANDREW A W,LIN H T. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload[J]. Journal of applied physics, 2009, 105: 112-114.[12] LEE S B. Development of a defflection controlled multiaxial fatigue testing maching[J]. KSME Journal, 1990, 4(2): 103-108.[13] CHUNG Y K, SONG J H, DO-YOUNG LEE. Development of a fatigue testing system for thin films[J]. International Journal of Fatigue, 2009, 31: 736-742.[14] YONEKAWA M, ISHII T,OHMI M, et al.. Development of a remote-controlled fatigue test machine using a laser extensometer for investigation of irradiation effect on fatigue properties [J]. Journal of Nuclear Materials, 2002, 307-311: 1613-1618.[15] BERCHEML K, HOCKING M G. A simple plane bending fatigue and corrosion fatigue testing machine[J]. Measurement science and technology, 2006, 17: 60-66.[16] KOENEN A, VIRMOUX P H, GRAS R, et al.. A machine for fretting fatigue and fretting wear testing in cryotechical and normal environment[J].Wear, 1996, 197: 192-196.[17] SRIRAM T S, FINE M E, CHUNG Y W. A flange-mounted UHV-compatible axial fatigue apparatus using a piezoelectric actuator[J]. Review of Scientific Instruments, 1991, 62(8): 2008-2010.[18] CLAUDE B. Piezoelectric fatigue testing machines and devices[J]. International Journal of Fatigue, 2006, 28: 1438-1445.[19] SAITO S, KIKUCHI K, ONISHI Y, et al.. Development of piezoelectric ceramics driven fatigue testing machine for small specimens[J]. Journal of Nuclear Materials, 2002, 307-311: 1609-1612.
0
浏览量
459
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构