浏览全部资源
扫码关注微信
1. 厦门大学 机电工程系,福建 厦门,361005
2. 泰普生物科学(中国)有限公司,福建 厦门,361009
收稿日期:2012-04-28,
修回日期:2012-06-05,
纸质出版日期:2012-09-10
移动端阅览
张建寰, 张陈涛, 卓勇, 陈延平, 林珊, 孔令华. 多光谱阴道镜的微型化多通道滤光片设计[J]. 光学精密工程, 2012,20(9): 2035-2040
ZHANG Jian-huan, ZHANG Chen-tao, ZHUO Yong, CHEN Yan-ping, LIN Shan, KONG Ling-hua. Design of micro-arrayed multichannel optical filter for multispectral colposcope[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 2035-2040
张建寰, 张陈涛, 卓勇, 陈延平, 林珊, 孔令华. 多光谱阴道镜的微型化多通道滤光片设计[J]. 光学精密工程, 2012,20(9): 2035-2040 DOI: 10.3788/OPE.20122009.2035.
ZHANG Jian-huan, ZHANG Chen-tao, ZHUO Yong, CHEN Yan-ping, LIN Shan, KONG Ling-hua. Design of micro-arrayed multichannel optical filter for multispectral colposcope[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 2035-2040 DOI: 10.3788/OPE.20122009.2035.
设计了一种可与阴道镜中的图像传感器集成的微型化多通道滤光片
以使阴道镜具有光谱成像能力。采用微光刻技术及真空多层镀膜技术制成微滤光片
内部微滤光单元的通光波长与病灶标志物反射光谱或荧光光谱的特征峰相对应
与图像传感器集成后
能够获取几幅与光谱特征峰对应的特征波长图像
这些图像凸显了病变组织与正常组织的差异
提供了宫颈组织上皮表面形态变化及上皮组织内病灶标志物含量变化的信息。已加工出通光波长为
1
=630 nm、
2
=460 nm、
3
=515 nm、
4
=577 nm的微滤光片
微滤光单元面积为10 m10 m
各通道带宽约为40 nm
透射率为30%~40%。实验显示微滤光片的光学性能已达到光谱成像的基本要求
与阴道镜集成后
能有效提高其诊断的灵敏度与特异性
减少活检频率。
A micro-arrayed multichannel optical filter is proposed to allow the colposcopy to have an ability of multispectral imaging. The micro-arrayed filter is fabricated by micro-lithographic procedures and vacuum multilayer thin film coatings
and the wavelengths of light passing through the filter correspond to the characteristic peaks of the biomarkers in the reflectance or fluorescence spectra. After integrating the filter with an image sensor on colposcopy
multiple spectral images centered at different wavelengths can be obtained to provide the information about morphological changes on cervical surface and the quantitative variation of the biomarkers in cervical tissues. The micro-arrayed filter with four kinds of filter cells (
1
=630 nm
2
=460 nm
3
=515 nm
4
=577 nm) has been fabricated successfully with an area of 10 m10 m for each filter cell. The bandwidth of each filter cell is about 40 nm
and the transmittance is between 30% and 40%. Experiments demonstrate that the optical properties of micro-arrayed filter satisfy the basic requirements of multispectral imaging. After integrating with a colposcope
the sensitivity and specificity of colposcope diagnosis is improved significantly
which can reduce the biopsy frequencies for patients.
FERLAY J, SHIN H-R, BRAY F, et al.. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 [J]. International Journal of Cancer, 2010,127(12):2893-2917.[2] CHANG V TC, CARTWRIGHT P S, BEAN S M, et al.. Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy [J]. Neoplasia,2009,11(4):325-332.[3] CARDENAS-TURANZAS M, FREEBERG J A, BENEDET J L, et al.. The clinical effectiveness of optical spectroscopy for the in vivo diagnosis of cervical intraepithelial neoplasia: Where are we? [J]. Gynecologic Oncology, 2007,107(1, Supplement):S138-S146.[4] CANTOR S B, YAMAL J-M, GUILLAND M, et al.. Accuracy of optical spectroscopy for the detection of cervical intraepithelial neoplasia: Testing a device as an adjunct to colposcopy [J]. International Journal of Cancer,2011, 128(5):1151-1168.[5] ORFANOUDAKI I M, KAPPOU D, SIFAKIS S. Recent advances in optical imaging for cervical cancer detection [J]. Archives of Gynecology and Obstetrics, 2011,284(5):1197-1208.[6] MURALI K C, SOCKALINGUM G D, VIDYASAGAR M S, et al.. An overview on applications of optical spectroscopy in cervical cancers [J]. Journal of Cancer Research and Therapeutics,2008,4(1):26-36.[7] BALAS C. A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix [J]. IEEE Transactions on Biomedical Engineering, 2001,48(1):96-104.[8] THEKKEK N, RICHARDS-KORTUM R. Optical imaging for cervical cancer detection: solutions for a continuing global problem [J]. Nature Reviews Cancer, 2008,8(9):725-731.[9] CHANG S K, MIRABAL Y N, ATKINSON E N, et al.. Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer [J]. Journal of Biomedical Optics,2005,10(2):024031.[10] EBENEZAR J, ARUNA P, GANESAN S. Synchronous fluorescence spectroscopy for the detection and characterization of cervical cancers in vitro [J]. Photochemistry and Photobiology,2010,86(1):77-86.[11] YI D, KONG L, WANG F, et al.. Instrument an Off-shelf CCD imaging sensor into a handheld multispectral video camera [J]. Photonics Technology Letters, 2011,23(10):606 - 608.[12] KONG L, YI D, SPRIGLE S, et al.. Single sensor that outputs narrowband multispectral images [J]. Journal of Biomedical Optics,2010,15(1):010502.[13] YI D, KONG L. Fabrication of densely patterned micro-arrayed multichannel optical filter mosaic [J]. Journal of Micro/Nanolithography, MEMS and MOEMS,2011,10(3):033020.[14] MOURANT J R, BOCKLAGE T J, POWERS T M, et al.. In vivo light scattering measurements for detection of precancerous conditions of the cervix [J]. Gynecologic Oncology,2007,105(2):439-445.
0
浏览量
203
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构