浏览全部资源
扫码关注微信
武汉大学 电子信息学院,湖北 武汉,中国,430072
收稿日期:2012-05-04,
修回日期:2012-07-02,
纸质出版日期:2012-09-10
移动端阅览
石文轩, 李婕. 最小化预测残差的图像序列压缩感知[J]. 光学精密工程, 2012,20(9): 2095-2102
SHI Wen-xuan, LI Jie. Image sequence compressed sensing by minimizing prediction errors[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 2095-2102
石文轩, 李婕. 最小化预测残差的图像序列压缩感知[J]. 光学精密工程, 2012,20(9): 2095-2102 DOI: 10.3788/OPE.20122009.2095.
SHI Wen-xuan, LI Jie. Image sequence compressed sensing by minimizing prediction errors[J]. Editorial Office of Optics and Precision Engineering, 2012,20(9): 2095-2102 DOI: 10.3788/OPE.20122009.2095.
提出了一种最小化预测残差的图像序列压缩感知算法以实现高速相机输出图像的实时压缩。首先
在编码端仅使用映射矩阵对原始输出图像进行压缩
将压缩得到的观测向量通过信道传输到解码端。接着
在解码端对相邻帧进行运动估计和运动补偿
得到一幅待重建图像的预测图像
利用压缩感知算法对原始图像和预测图像之间存在的预测残差图像进行重建。最后
用迭代的方法优化预测残差图像的重建结果
直到连续两次的重建结果之差小于设定阈值
从而获得重建的原始图像。采用DALSA公司的CR-GEN0-H6400相机进行的实验表明
该算法可以实现1 000 frame/s图像的实时压缩
并且图像重建质量比独立地重建每张图像至少提高了2~6 dB
有效地实现了对高速相机输出图像的实时压缩与高质量重建。
An image sequence compressed sensing algorithm by minimizing prediction errors was proposed for high speed camera image compression in real-time. First
an original image was compressed only by a projection matrix on the encoder side. The observed vector obtained by compressing was transferred to the decoder through a channel. Then
motion estimation and motion compensation were performed on correlated images on the decoder side
and a prediction image was generated in this way. Furthermore
the prediction error image which is the difference between original image and prediction image was reconstructed by compressed sensing. Finally
the reconstruction of prediction error image was improved by an iterative procedure
until the difference between two consecutive reconstruction results was smaller than a predetermined threshold. Therefore
the original image was reconstructed by the prediction error image. Experiments by CR-GEN0-H6400 camera from DALSA indicate that the proposd algorithm can compress 1 000 frame/s images in real-time
and image reconstruction result is improved by 2-6 dB at least as compared with that of independent reconstruction. The proposed algorithm can compress high speed camera images in real-time
and can reconstruct the images in high quality.
WATKINSON J. The MPEG Handbook: MPEG-1, MPEG-2, MPEG-4 [M]. Boston,MA: Focal Press,2004.[2] WIEGAND T, SULLIVAN G J, BJONTEGAARD G, et al.. Overview of the H.264/AVC video coding standard [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(7): 560-576.[3] 李桂菊, 刘刚, 梁静秋. H.264快速运动估计算法的改进[J]. 光学 精密工程, 2010, 18(11): 2489-2496. LI G J, LIU G, LIANG J Q. Improvement of fast motion estimation algorithm used in H. 264 [J]. Opt. Precision Eng., 2010, 18(11): 2489-2496. (in Chinese)[4] GIROD B, AARON A M, RANE S, et al.. Distributed video coding [J]. IEEE-Special Issue Advances video coding and Delivery, 2005, 93(1):71-83.[5] LIU L, LI Z, DELP E J. Efficient and low-complexity surveillance video compression using backward-channel aware Wyner-Ziv video coding [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(4):453-465.[6] MARPE D, GEORGE V, CYCON H L, et al.. Performance evaluation of Motion-JPEG2000 in comparison with H. 264/AVC operated in pure intra coding mode [J]. Wavelet Applications in Industrial Processing, 2003, 5266:127-137.[7] 卿粼波, 何小海, 张志亮. 分布式视频编码中虚拟信道模型的动态估计[J]. 光学 精密工程, 2009, 17(4): 923-929. QING L B, HE X H, ZHANG Z L. Dynamic estimation of virtual channel model for distributed video coding [J]. Opt. Precision Eng., 2009, 17(4): 923-929. (in Chinese)[8] SLEPIAN D, WOLF J. Noiseless coding of correlated information source [J]. IEEE Transactions on Information Theory, 1973, 19(4): 471-480.[9] WYNER A, ZIV J. The rate-distortion function for source coding with side information at decoder [J]. IEEE Transactions on Information Theory, 1976, 22(1): 1-10.[10] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.[11] DONOHO D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.[12] 焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39(7): 1651-1662. JIAO L C, YANG S Y, LIU F, et al.. Development and prospect of compressive sensing [J]. Acta Electronica Sinica, 2011, 39(7): 1651-1662. (in Chinese)[13] 刘欣悦, 董磊, 王建立. 稀疏采样傅里叶望远镜成像[J]. 光学 精密工程, 2010,18(3): 521-527. LIU X Y, DONG L, WANG J L. Fourier telescopy imaging via sparse sampling [J]. Opt. Precision Eng., 2010,18(3): 521-527. (in Chinese)[14] 邵树斌. 基于压缩感知理论的视频帧间信号编码研究.天津:天津大学, 2010. SHAO S B. Research on compressed sensing-based inter-frame coding for digital videos. Tianjing:Tianjin University, 2010. (in Chinese)[15] 潘榕, 段继忠, 刘昱. 压缩感知及其在图像和视频编码中的应用[J]. 电视技术, 2012, 36(1): 10-14. PAN R, DUAN J Z, LIU Y. Compressed sensing and application in image and video coding [J]. Video Engineering, 2012,36(1): 10-14. (in Chinese)[16] 翟冲. 基于压缩感知的视频编码技术研究. 大连:大连理工大学, 2010. ZHAI C. The research of video coding based on compressive sensing . Dalian: Dalian University of Technology, 2010. (in Chinese)[17] CANDES E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes Rendus Mathematique, 2008, 346(9): 589-592.[18] CANDES E J, TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.[19] CANDES E J, ROMBERG J, TAO T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.[20] BOYD S, VANDENBERGHE L. Convex Optimization [M]. Cambridge University Press, 2004.
0
浏览量
191
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构