浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春,130033
收稿日期:2012-05-11,
修回日期:2012-06-15,
纸质出版日期:2012-10-10
移动端阅览
刘迪, 宁永强, 张金龙, 张星, 王立军. 高功率InGaAs/GaAsP应变量子阱垂直腔面发射激光器列阵[J]. 光学精密工程, 2012,20(10): 2147-2153
LIU Di, NING Yong-qiang, ZHANG Jin-long, ZHANG Xing, WANG Li-jun. High-power InGaAs/GaAsP strained quantum well vertical-cavity surface-emitting laser array[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2147-2153
刘迪, 宁永强, 张金龙, 张星, 王立军. 高功率InGaAs/GaAsP应变量子阱垂直腔面发射激光器列阵[J]. 光学精密工程, 2012,20(10): 2147-2153 DOI: 10.3788/OPE.20122010.2147.
LIU Di, NING Yong-qiang, ZHANG Jin-long, ZHANG Xing, WANG Li-jun. High-power InGaAs/GaAsP strained quantum well vertical-cavity surface-emitting laser array[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2147-2153 DOI: 10.3788/OPE.20122010.2147.
为提高垂直腔面发射激光器(VCSEL)的输出功率
对具有3个In
0.2
Ga
0.8
As/GaAs
0.92
P
0.08
应变量子阱结构
发射波长为977 nm的VCSEL列阵进行了研究。对量子阱结构进行了优化
选择具有更宽带隙的GaAsP作为势垒材料
计算了In
0.2
Ga
0.8
As/GaAs
0.92
P
0.08
量子阱的带阶。对采用In
0.2
Ga
0.8
As/GaAs
0.92
P
0.08
和In
0.2
Ga
0.8
As/GaAs两种量子阱结构的器件的输出功率进行了理论模拟和比较分析。分别测试了上述两个列阵器件的脉冲峰值功率并利用由开启电压、阈值电流和串联电阻决定的
p
参数评估了列阵器件的输出性能。实验结果表明
当注入电流为110 A时
发光面积为0.005 cm
2
的In
0.2
Ga
0.8
As/GaAs
0.92
P
0.08
44 VCSEL 列阵获得了123 W的脉冲峰值功率
比具有相同发光面积的In
0.2
Ga
0.8
As/GaAs列阵器件的脉冲峰值功率大13%
前者相应的功率密度和斜率效率分别为45.42 kW/cm
2
和1.11 W/A。连续和脉冲工作下的
p
值分别为15和13
表明器件在两种工作条件下都具有相对较好的输出性能。得到的结果证明
包含3个In
0.2
Ga
0.8
As/GaAs
0.92
P
0.08
应变量子阱的44VCSEL列阵器件能够获得较高的功率输出。
To improve the output powers of Vertical Cavity Surface Emitting Lasers (VCSELs)
a 977 nm VCSEL array with three In
0.2
Ga
0.8
As/GaAs
0.92
P
0.08
strained Quantum Wells(QWs) was studied. The structures of the QWs were optimized and GaAsP with a larger band gap was chosen as the barrier material
and the band offsets of In
0.2
Ga
0.8
As/GaAs
0.92
P
0.08
were calculated. The output powers of the devices which used In
0.2
Ga
0.8
As/GaAs
0.92
P
0.08
and In
0.2
Ga
0.8
As/GaAs QWs were simulated theoretically and analyzed comparetively
respectively and the pulsed peak powers of two array devices were measured. Then
the performance of the array device was estimated by a functional method using a
p
-parameter determined by the turn-on voltage
threshold current
and the differential resistance. Experimental results show that the 44 VCSEL array with In
0.2
Ga
0.8
As/GaAs
0.92
P
0.08
QWs and an emitting area of 0.005 cm
2
can achieve a pulsed peak power of 123 W when the injecting current is 110 A
and its power density and slope efficiency are 45.42 kW/cm
2
and 1.11 W/A
respectively. This output power is 13% larger than that of the array with In
0.2
Ga
0.8
As/GaAs QWs and the same emitting area. Furthermore
the values of
p
parameter are 15 and 13 under CW operation and pulsed operation
respectively
which indicates that the device has relatively good performance. In conclusion
the 44 VCSEL array with three In
0.2
Ga
0.8
As/GaAs
0.92
P
0.08
strained QWs is able to achieve higher output powers.
AMANN M C, ORTSIEFER M, SHAU R, et al.. Vertical-cavity surface-emitting laser diodes for telecommunication wavelengths[J]. SPIE, 2002, 4871:123-129.[2] 王祥鹏,梁雪梅,李再金,等. 880 nm半导体激光器列阵及光纤耦合模块[J]. 光学 精密工程, 2010, 18 (5): 1021-1027. WANG X P, LIANG X M, LI Z J, et al.. 880 nm semiconductor laser diode arrays and fiber coupling module[J]. Opt. Precision Eng., 2010,18 (5):1021-1027. (in Chinese)[3] CUI J J, NING Y Q, ZHANG Y, et al.. Design and characterization of a nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-field distribution[J]. Applied Optics, 2009, 48 (18):3317-3321.[4] LI T, NING Y Q, SUN Y F, et al.. High-power InGaAs VCSELs single devices and 2-D arrays[J]. J. Lumin., 2007, 122-123: 571-573.[5] OTAKE N, ABE K, YAMADA H, et al.. High-power vertical-cavity surface-emitting laser under a short pulsed operation[J]. APEX, 2009, 2 (052102): 052102-1-052102-2.[6] MILLER M, GRABHERR M, J GER R, et al.. High-power VCSEL arrays for emission in the Watt regime at room temperature[J]. IEEE Photon. Technol. Lett., 2001, 13 (5): 173-175.[7] SEURIN J F, GHOSH C L, KHALFIN V, et al.. High-power high-efficiency 2D VCSEL arrays[J]. SPIE, 2008, 6908: 690808-1-690808-14.[8] 侯立峰,钟景昌,赵英杰,等. 垂直腔面发射激光器的湿法氧化速率规律[J]. 中国激光, 2009, 36 (4): 790-793. HOU L F,ZHONG J CH,ZHAO Y J, et al.. Law of wet oxidation rate in vertical-cavity surface-emitting lasers[J]. Chinese J. Lasers, 2009, 36(4):790-793. (in Chinese)[9] 李再金,胡黎明,王烨,等. 808 am含铝半导体激光器的腔面镀膜[J]. 光学 精密工程, 2010, 18(6):1258-1262. LI Z J, HU L M, WANG Y, et al.. Facet coating for 808 nm Al-containing semiconductor laser diodes[J]. Opt. Precision Eng., 2010,18(6):1258-1262. (in Chinese)[10] ZHANG P, SONG Y R, TIAN J R, et al.. Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers[J]. J. Appl. Phys., 2009,105:053103-1-053103-8.[11] 陈彦超,赵柏泰,李伟. 用于纳秒级窄脉冲工作的大功率半导体激光器模块[J]. 光学 精密工程,2009,17(4):695-700. CHEN Y CH, ZHAO B T, LI W. High peak power semiconductor laser module for producing nanosecond pulse[J]. Opt. Precision Eng., 2009, 17(4): 695-700. (in Chinese)[12] 丛梦龙,李黎,崔艳松,等. 控制半导体激光器的高稳定度数字化驱动电源的设计[J]. 光学 精密工程, 2010,18 (7):1629-1636. CONG M L, LI L, CUI Y S, et al.. Design of high stability digital control driving system for semiconductor laser[J]. Opt. Precision Eng.,2010,18(7):1629-1636. (in Chinese)
0
浏览量
516
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构