浏览全部资源
扫码关注微信
1. 中国科学院 安徽光学精密机械研究所,安徽 合肥,230031
2. 中国科学院合肥智能机械研究所,安徽 合肥,230031
3. 无锡中科智能农业发展有限公司,江苏 无锡,214105
收稿日期:2012-05-14,
修回日期:2012-07-02,
纸质出版日期:2012-10-10
移动端阅览
郑守国, 李淼, 张健, 张浩东, 胡泽林. 痕量N<sub>2</sub>O气体检测系统的设计与实现[J]. 光学精密工程, 2012,20(10): 2154-2160
ZHENG Shou-guo, LI Miao, ZHANG Jian, ZHANG Hao-dong, HU Ze-lin. Design and implementation of trace N<sub>2</sub>O detection system[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2154-2160
郑守国, 李淼, 张健, 张浩东, 胡泽林. 痕量N<sub>2</sub>O气体检测系统的设计与实现[J]. 光学精密工程, 2012,20(10): 2154-2160 DOI: 10.3788/OPE.20122010.2154.
ZHENG Shou-guo, LI Miao, ZHANG Jian, ZHANG Hao-dong, HU Ze-lin. Design and implementation of trace N<sub>2</sub>O detection system[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2154-2160 DOI: 10.3788/OPE.20122010.2154.
建立了基于光谱吸收技术的检测系统
用于快速、准确地测量N
2
O气体浓度。首先
从理论上证明了二次谐波、一次谐波与N
2
O气体浓度之间的关系;然后
设计了痕量N
2
O气体浓度检测系统
利用光源调制、锁相放大等技术
实现了强杂波背景下气体浓度弱信号的解析;最后
实验测试了系统的检测性能、抗干扰能力及检测结果的可重复性。测试结果表明
系统能够在0~1%有效检测N
2
O气体浓度
检测下限为5.010
-5
相对检测误差为0.11%
检测结果线性方程为
Y
=192.699 09
X
-0.006 24
线性度为0.998 07。多次检测实验表明
系统相对标准偏差为0.137%
CO
2
、O
2
、水蒸气等常见气体对检测结果无影响。改变激光器的中心波长
该方法亦可用于CO
2
CH
4
等其它温室气体的检测。
A measurement system based on the spectral absorption was established to measure the N
2
O concentration accurately.First
the relationship of the second-harmonic
the first-harmonic with N
2
O gas concentration was demonstrated in theory. Then
a N
2
O detection system for trace concentration was designed based on a Distribute Feedback Laser(DFB).By using the light modulation and lock-in amplifier technologies
weak gas concentration signals in the strong clutter background were analyzed. Finally
the detection performance
anti-jamming capability and the repeatability of test results were verified through experiments. Test results indicate that the system can offer the measuring range from 0 to 1%
detection limit of 5.010
-5
and the relative detection error of 0.11%. Furthermore
the linear equation is
Y
=192.699 09
X
-0.006 24
the linearity is 0.998 07
and the relative standard deviation is 0.137%.It also proves that the CO
2
O
2
water vapor
et al
. have no effect on the experimental results. By changing the centre wavelength of the laser
the system can be used in the detection of other greenhouse gases
such as CO
2
and CH
4
.
王敏,张玉钧,刘文清,等. 基于室温量子级联激光器的脉内光谱技术测量N2O[J]. 光谱学与光谱分析, 2009,29(12):3181-3184. WANG M, ZHANG Y J, LIU W Q, et al.. Intra-pulse spectroscopy based on room-temperature pulsed quantum-cascade laser for N2O detection [J]. Spectroscopy and Spectral Analysis, 2009,29(12):3181-3184.(in Chinese)[2] COOPER D E, MARTINELLI R U. Near-infrared diode lasers monitor molecular species [J]. Laser Focus World, 1992, 28(11):133-146.[3] KENT L. Development of a real-time diode laser mass flux sensor for simultaneous measurement of density and velocity of oxygen .Stanford: Stanford University, 2005.[4] 刘瑾,车仁生,王玉田. 一种基于谐波检测技术的光纤甲烷气体传感器[J]. 应用光学,2004,25(2):44-47. LIU J,CHE R SH,WANG Y T. A methane gas sensor with optic fiber based on frequency harmonic detection technique [J]. Journal of Applied Optics, 2004,25(2):44-47.(in Chinese)[5] 王敏,刘文清,刘建国,等. 可调谐二极管激光吸收光谱二次谐波检测方法的研究[J]. 光学技术, 2005,31(2):279-285. WANG M, LIU W Q,LIU J G, et al.. Second-harmonic detection research with tunable diode laser absorption spectroscopy [J]. Optical Technique, 2005,31(2):279-285. (in Chinese)[6] 李亚萍,张广军,李庆波. 空间双光路红外CO2气体传感器及其测量模型[J]. 光学 精密工程, 2009, 17(1):14-19. LI Y P, ZHANG G J, LI Q B. Infrared CO2 gas sensor based on space double beams and its measurement model [J]. Opt. Precision Eng., 2009, 17(1):14-19.(in Chinese)[7] de MARCELLIS A, DEPARI A, FERRI G. Low-voltage low-power integrated analog lock-in amplifier for gas sensor. 22nd International Conference on Eurosensors, Dresden, Germany: ICE, 2010:400-406.[8] 陈洪耀, 张黎明. 基于特征吸收波长板的色散型高光谱传感器光谱定标技术[J]. 光学 精密工程, 2010, 18(12):2442-2646. CHEN H Y, ZHANG L M. Spectral calibration for dispersive hyper spectral sensor based on doped reflectance standard panel [J]. Opt. Precision Eng., 2010, 18(12):2442-2646.(in Chinese)[9] KRZEMPEK K,LEWICKI R, N HLE L,et al.. Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane [J]. Applied Physics B, 2012,106(2):251-255.[10] WELDON V. H2S and CO2 gas sensing using a l.57 DFB laser diode. Proceedings of the 2nd European conference on Optical Chemical Sensors and Bio-sensors, Florence, Italy: ECOBS, 1994, 26:19-21.[11] 陈霄,隋青美,苗飞,等. 高灵敏度腔增强吸收式乙炔气体检测系统[J]. 光学 精密工程,2012,20(1):9-16. CHEN X, SUI Q M, MIAO F, et al.. High sensitivity acetylene detection system based on cavity enhanced absorption technique [J]. Opt. Precision Eng., 2012, 20(1):9-16.(in Chinese)[12] MUHAMMAD F A,STEWART G. D-shaped optical fiber design for methane gas sensing [J]. Electron Lett., 2009, 28(13):1025-1026.[13] 陈霄,隋青美,苗飞,等. 应用单一超窄线宽激光器的多气体检测系统设计[J]. 光学 精密工程,2011,19(7):1495-1502. CHEN X, SUI Q M, MIAO F, et al.. Design of detecting system for multi-component gases based on single ultra-narrow-linewidth laser [J]. Opt. Precision Eng., 2011, 19(7):1495-1502. (in Chinese)[14] GERARD D, ELFED L, COLIN F, et al.. Low concentration monitoring of exhaust gases using a UV-based optical sensor [J]. IEEE Sensors Journal, 2007, 7(5):685-691.[15] 赵燕杰,王昌,刘统玉,等. 基于光谱吸收的光纤甲烷监测系统在瓦斯抽采中的应用[J]. 光谱学与光谱分析, 2010, 30(10):2857-2860. ZHAO Y J, WANG CH, LIU T Y, et al.. Application in methane extraction of fiber methane monitoring system based on spectral absorption [J]. Spectroscopy and Spectral Analysis, 2010, 30(10):2857-2860. (in Chinese)
0
浏览量
557
下载量
14
CSCD
关联资源
相关文章
相关作者
相关机构