浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
收稿日期:2012-05-10,
修回日期:2012-06-15,
纸质出版日期:2012-10-10
移动端阅览
曹乃亮, 徐宏, 辛宏伟, 袁野, 李志来, 杨会生. 基于NiTi合金丝的反射镜柔性支撑结构的应力补偿[J]. 光学精密工程, 2012,20(10): 2161-2169
CAO Nai-liang, XU Hong, XIN Hong-wei, YUAN Ye, LI Zhi-lai, YANG Hui-sheng. Stress compensation of flexible supporting structures for mirrors using NiTi shape memory alloy[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2161-2169
曹乃亮, 徐宏, 辛宏伟, 袁野, 李志来, 杨会生. 基于NiTi合金丝的反射镜柔性支撑结构的应力补偿[J]. 光学精密工程, 2012,20(10): 2161-2169 DOI: 10.3788/OPE.20122010.2161.
CAO Nai-liang, XU Hong, XIN Hong-wei, YUAN Ye, LI Zhi-lai, YANG Hui-sheng. Stress compensation of flexible supporting structures for mirrors using NiTi shape memory alloy[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2161-2169 DOI: 10.3788/OPE.20122010.2161.
针对大口径反射镜柔性支撑结构中柔性槽根部的应力集中问题
提出将NiTi记忆合金丝复合于柔性槽周边的结构方案
借助其预应变产生的拉应力来降低柔性槽根部的应力并保证支撑结构柔性。首先
建立了柔性槽根部的应力分布方程
得出了柔性槽危险截面位置。然后
建立了NiTi合金丝的一维本构方程
设计了桥型和U型两种复合方案
并对其进行了有限元分析。结果表明
采用U型复合的柔性支撑结构的应力改善明显优于桥型复合结构
且对结构柔性影响较小。以NiTi合金丝的拉力
F
为设计变量
以支撑结构的最大应力
p
及变形量
为优化目标
对U型复合结构进行了参数优化设计。优化结果表明
在
F
为200 N时有最优解
p
由76 MPa降到37.9 MPa
由0.031 mm微降到0.028 mm
并且最大应力位置偏离柔性槽根部危险区域。对所提出的U型复合方案进行了随机振动试验
试验结果表明
该应力补偿设计有效降低了柔性支撑结构的最大应力。
For the stress concentration regularly occured in the flexible supporting structures for large-aperture mirrors
a new method that composed the NiTi Shape Memory Alloy (SMA) around the flexible slots of the supporting structures was proposed
by which the tensile stress caused by pre-strain of the SMA can reduce the stress concentration greatly without decreasing the flexibility of the structure. Firstly
the stress distribution equation for the flexible supporting structure was established
and the dangerous cross-sections were analyzed. Then
the one-dimensional constitutive equation of the NiTi alloy wires was derived
and two composition schemes
cross-type layout and U-type layout
were designed accordingly.The finite element analysis was applied to the two schemes
and the results show that the U-type composition is superior to the cross-type one in both peak stress and structural flexibility.A parameterized optimization was applied to the U-type layout by taking the tension
F
of NiTi alloy wires as design variable and the maximum stress
p
and the distortion
as optimization objectives.The results demonstrate that the optimum solution is obtained when
F
is 200 N
which shows that the
p
is reduced from 76.0 MPa to 37.9 MPa while
from 0.031 mm to 0.028 mm slightly
and the maximum stress occurs away from the flexible slots. Random vibration tests were conducted for the U-type composition scheme
and the results verify the effectiveness of this method for the stress compensation.
王振清,王永军,周博. 形状记忆合金复合梁的振动特性[J]. 哈尔滨工程大学学报,2011,32(4):434-438. WANG ZH Q,WANG Y J,ZHOU B.Study on the vibration properties of a shape memory alloy composite beam [J]. Journal of Harbin Engineering University, 2011,32(4):434-438.(in Chinese)[2] 王晓宏,张博明,杜善义,等. 形状记忆合金驱动主动变形波纹板结构的有限元分析[J]. 机械工程学报,2009,45(8):287-291. WANG X H, ZHANG B M, DU SH Y, et al. Finite element analysis of corrugated sheets structure deforming initiatively with shape memory alloy actuators [J]. Journal of mechanical engineering, 2009,45(8):287-291.(in Chinese)[3] ROGERS C A. Structural modification of simple-support laminated plates using embedded shape memory alloy fibers [J]. Computer & structure, 1991, 38:569-580.[4] JEFFREY S N PAINE, ROGERS C A, SMITH R A. Adaptive composite materials with shape memory alloy actuators for cylinder and pressure vessels [J]. SPIE,1994,2190:390-401.[5] THAMBURAGA P, ANAND L. Super elastic behavior in tension torsion of an initially textured NiTi shape memory alloy [J]. International Journal of Plasticity, 2002, 18:1607-1617.[6] 左晓宝,李爱群,倪立峰. 超弹性记忆合金丝(NiTi)力学性能的实验研究[J]. 土木工程学报,2000,37(12):10-16. ZUO X B, LI A Q, NI L F. An experimental study on the mechanical behavior of superelastic NiTi shape memory alloy wires [J]. China Civil Engineering Journal, 2000,37(12):10-16.(in Chinese)[7] COHEN L M, CERNOCK L, MATHEWS G, et al. Structural considerations for fabrication and mounting of the AXAF HRMA optics [J]. SPIE,1990,1303:162.[8] SHOLL M, LAMPTON M, ALDERING G, et al. SNAP telescope [J]. SPIE,2004,5487:1473-1483.[9] 李琳,杨勇. 空间曲线切口式柔性铰的设计[J]. 光学 精密工程,2010,18(10):2192-2198. LI L, YANG Y. Design of flexure hinges with space curve notches[J]. Opt. Precision Eng., 2010,18(10):2192-2198.(in Chinese)[10] YAN Y, JIN G G, YANG H B. Design and analysis of large spaceborne light-weighted primary mirror and its support system [J]. SPIE,2007,6721:67210V-1-67210V-7.[11] RICHARD R M, VUKOBRATOVICH D, CHO M, et al.. The flexure assembly design for the SIRTF one-meter primary mirror. Conference on Cryogenic Optical Systems and Instruments III in Conjunction with SPIE's 32. Annual International Technical Symposium on Optical and Optoelectronic Applied Science and Engineering, 1989:79-85.[12] ZINN J W,JONES G W. Kepler primary mirror assembly: FEA surface figure analyses and comparison to metrology [J]. SPIE,2007,6721:667105-1-667105-11.
0
浏览量
414
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构