浏览全部资源
扫码关注微信
1. 大连交通大学 电气信息学院,辽宁 大连,116028
2. 大连理工大学 电子科学与技术学院,辽宁 大连,116024
收稿日期:2012-05-23,
修回日期:2012-07-01,
纸质出版日期:2012-10-10
移动端阅览
薛严冰, 唐祯安. 陶瓷微热板阵列式可燃气体传感器[J]. 光学精密工程, 2012,20(10): 2200-2206
XUE Yan-bing, TANG Zhen-an. Gas sensor array based on ceramic micro-hotplate for flammable gas detection[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2200-2206
薛严冰, 唐祯安. 陶瓷微热板阵列式可燃气体传感器[J]. 光学精密工程, 2012,20(10): 2200-2206 DOI: 10.3788/OPE.20122010.2200.
XUE Yan-bing, TANG Zhen-an. Gas sensor array based on ceramic micro-hotplate for flammable gas detection[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2200-2206 DOI: 10.3788/OPE.20122010.2200.
设计了基于陶瓷基底的悬桥式微热板结构以解决硅微热板高温稳定性差的问题。分析了微热板的传热过程
并通过有限元工具对其稳态热响应特性及微加热器电极结构进行了模拟。采用常规微电子技术结合激光微加工技术
实际制作了基底厚度为100
m
桥宽度为2 mm的微结构
并对结构的加热功率-温度关系进行了测试。结果表明:热板具有较好的高温稳定性
1.5 W加热功率可使板上平均温度达到630℃。将桥式微热板作为阵列传感器的加热平台
Pd掺杂原子数百分比为0.2%和10%的SnO
2
纳米材料分别作为阵列中两只传感器的敏感膜材料
设计并制作了阵列式气体传感器。传感器在恒电压加热方式下可实现CO或CH
4
单一模式气体检测;阵列传感器在高、低温脉冲电压加热模式下可实现对CO和CH
4
两种混合气体的定量检测。
A ceramic hotplate with the structure of suspending bridge was designed to improve the thermal stability of silicon micro hotplates. The heat transfer process of the hotplate was analyzed and the characteristics of steady-state thermal response and the electrode structure of a heater were simulated by using the finite element method. Combined the conventional microelectronic technology and laser micro processing technology
the microstructures with thickness of 100
m and bridge width of 2 mm were produced actually and the property of power assumption verses the temperature was measured. The results show that the hotplate has good stability at high temperature
and the average temperature on the ceramic hot-plate can reach 630℃ when a 1.5 W heating power is applied.By taking the ceramic hotplate as heating platform and nano-scale SnO
2
materials with Pd doping concentration of 0.2% and 10%(atom number percentage) as sensitive membrane materials
respectively
the array with two sensors was designed and fabricated.Experiments show that when the sensor array works in the constant voltage heating mode
it can be used as a single sensor with good response to CO or CH
4
gases. When the sensor array works at pulse voltage heating mode with alternating high or low working temperatures
it can realize quantitative detection for mixed gases of CO and CH
4
.
BARBRI N, MIRHISSE J, IONESCU R, et al.. An electronic nose system based on a micro-machined gas sensor array to assess the freshness of sardines [J]. Sensors and Actuators B: Chemical, 2009, 141:538-543.[2] IVANOV P, LLOBET E, VERGARA A, et al.. Towards a micro-system for monitoring ethylene in warehouses [J]. Sensors and Actuators B, 2005,111-112: 63-70.[3] SZECOWKA P M, SZCZUREK A, LICZNERSKI B W. On reliability of neural network sensitivity analysis applied for sensor array optimization [J]. Sensors and Actuators B: Chemical, 2011, 157:298-303.[4] MONTOLIU I, TAULER R, PADILLA M, et al.. Multivariate curve resolution applied to temperature-modulated metal oxide gas sensors [J]. Sensors and Actuators B: Chemical, 2010, 145:464-473.[5] 吴东江,张强,郭东明. Al2O3陶瓷薄片CO2连续激光弯曲试验[J]. 光学 精密工程. 2009,17(10):2473-2478. WU D J, ZHANG Q, GUO D M. Experiment on bending of Al2O3 ceramic slice with CO2 CW-laser[J]. Opt. Precision Eng., 2009, 17(10):2473-2478. (in Chinese)[6] 施云芬,施云波,刘月华,等. 基于MEMS叠层微结构的SO2毒气传感器[J]. 光学 精密工程,2008,16(6):1075 -1081. SHI Y F,SHI Y B,LIU Y H, et al.. Sulfur dioxide poison gas sensor based on MEMS laminated microstructure [J]. Opt. Precision Eng., 2008,16(6):1075-1081. (in Chinese)[7] PISARKIEWICZ T, SUTOR A, POTEMPA P, et al.. Micro sensor based on low temperature cofired ceramics and gas-sensitive thin film [J]. Thin Solid films, 2003(436):84-89.[8] RETTIG F, MOOS R. Ceramic meso-hotplates for gas sensors [J]. Sensors and Actuators B, 2004(103):91-97.[9] VASILIEV A A, PAVELKO R G, GOGISH S Y, et al.. Alumina MEMS platform for impulse semiconductor and IR optic gas sensors[J]. Sensors and Actuators B, 2008, 132:216-223.[10] VASILIEV A A, GOGISH S Y. The optimization of high-temperature sensor microhotplates based on thin alumina membranes [J]. Eurosensors XVII, 2003:344-347.[11] 薛严冰,唐祯安. 悬梁式陶瓷微热板的设计及热性能研究[J]. 光电子激光,2009,20(6):725-729. XUE Y B, TANG ZH A. The design and thermal property study of suspended hotplate based on ceramic substrate [J]. Journal of OptoelectronicsLaser, 2009,20(6):725-729. (in Chinese)[12] 薛严冰,唐祯安. 基于陶瓷微热板的高温气体传感器研究[J]. 光电子激光,2011,22(7):976-979. XUE Y B, TANG ZH A. The study of high-temperature working gas sensors based on ceramic hot-plate[J]. Journal of OptoelectronicsLaser, 2011,22(7):976-979. (in Chinese)[13] SIMON I, BARSAN N, BAUER M, et al.. Micromachined metal oxide gas sensors:opportunities to improve sensor performance [J]. Sensors and Actuators B, 2001,73:1-26.[14] BAUER R, GOLONKA L J, KIRCHNER T, et al.. Optimization of thermal distribution in ceramics and LTCC structures applied to sensor elements [J]. Microelectronics International, 1998,15(2):34-38.
0
浏览量
470
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构