浏览全部资源
扫码关注微信
南京理工大学 机械工程学院,江苏 南京,中国,210094
收稿日期:2012-06-26,
修回日期:2012-08-07,
纸质出版日期:2012-10-10
移动端阅览
王洪成, 侯丽雅, 章维一. 驱动电压波形修圆对微流体脉冲惯性力和驱动效果的影响[J]. 光学精密工程, 2012,20(10): 2251-2259
WANG Hong-cheng, HOU Li-ya, ZHANG Wei-yi. Influence of rounded driving voltage waves on micro-fluidic pulse inertial force and driving effects[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2251-2259
王洪成, 侯丽雅, 章维一. 驱动电压波形修圆对微流体脉冲惯性力和驱动效果的影响[J]. 光学精密工程, 2012,20(10): 2251-2259 DOI: 10.3788/OPE.20122010.2251.
WANG Hong-cheng, HOU Li-ya, ZHANG Wei-yi. Influence of rounded driving voltage waves on micro-fluidic pulse inertial force and driving effects[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2251-2259 DOI: 10.3788/OPE.20122010.2251.
介绍了微流体脉冲驱动-控制技术
分析了微流体脉冲驱动-控制过程
指出在这一过程中影响微流体流动的主要因素是微流道固壁加速度和流体内部的黏性力。采用"椭圆修圆法"对方波驱动电压进行修圆
针对修圆点的位置决定微流体的驱动方向
获得了不同修圆位置和修圆系数的驱动电压修圆波形。通过实验探索了波形修圆对微流道固壁运动加速度、微流体脉冲惯性力和流体驱动效果的影响规律并进行了机理分析。所得流体体积流量可在0~15.4 pl/min连续变化
远小于现有的微流体驱动技术。本文的研究成果可为微流体脉冲驱动-控制技术在微流体系统中的进一步应用提供参考。
Pulse driving and controlling technology of micro-fluids was introduced. The pulse driving and controlling process of micro-fluids was analyzed in detail and it points out that the acceleration of micro channel solid wall and the viscosity force of micro-fluidic are the main factors that influence on the flow of the micro-fluids. A method of "elliptic rounding" was adopted to round driving voltage waves. As the driving directions of the micro-fluids were determined by the locations of rounding points
a series of waves with different rounding locations and rounding coefficients were obtained. The influence rules of rounded waves on the acceleration of micro channel solid wall
micro-fluidic pulse inertial force and driving effects were researched by experiments. The experimental result indicates that the flow rate of micro fluidic volume can be in the range of 0~15.4 pl/min
which is more better than that of the current micro driving technology. The research results can provide a reference for the research on the further application of pulse driving and controlling technology of micro-fluids in micro-fluidic systems.
KHNOUF R, BEEBE D J, FAN Z H. Cell-free protein expression in a microchannel array with passive pumping [J]. Lab Chip, 2009, 9:56-61.[2] XU ZH R, YANAG CH G, LIU C H, et al.. An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture [J]. Talanta, 2010, 80: 1088-1093.[3] 江小宁,周兆英,李勇,等. 微流体运动的试验研究[J]. 光学 精密工程,1995,3(3):51-55. JIANG X N, ZHOU ZH Y, LI Y, et al.. Study on microfluid flow behavior [J]. Opt. Precision Eng., 1995,3(3):51-55. (in Chinese)[4] WANG X, CHEN X M, MA X F, et al.. Fast DNA hybridization on a microfluidic mixing device based on pneumatic driving [J]. Talanta, 2011,84:565-571.[5] YOON D S, LEE Y S, LEE Y S, et al.. Precise temperature control and rapid thermal cycling in a micromachined DNA polymerase chain reaction chip [J]. J. Micromech. Microeng, 2002,12:813-823.[6] GUO ZH X, ZENG Q, ZHANG M, et al.. Valve-based microfluidic droplet micromixer and mercury (II) ion detection [J]. Sens. Actuators A., 2011,172:546-551.[7] GREEN N G, RAMOS A, GONZALEZ A, et al.. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation [J]. Physical Review E, 2002, 66: 026305-1-026305-11.[8] K HLER J M, KIMER T. Nanoliter segment formation in micro fluid devices for chemical and biological micro serial flow processes in dependence on flow rate and viscosity [J]. Sens. Actuators A., 2005, 119:19-27.[9] LUQUE A, QUERO J M, HIBERT C, et al.. Integrable silicon microfluidic valve with pneumatic actuation [J]. Sens. Actuators A., 2005,118:144-151.[10] DARHUBER A A, VALENTINO J P, DAVIS J M, et al.. Microfluidic actuation by modulation of surface stresses [J]. Appl. Phys. Lett., 2003, 82(4):656-659.[11] WANG X Y, CHENG CH, WANG SH L, et al.. Electroosmotic pumps and their applications in microfluidic systems [J]. Microfluid Nanofluid, 2009,6:145-162.[12] B STGENS B, BACHER W, MENZ W. Micropump manufactured by thermoplastic molding [J]. IEEE, 1994:18-21.[13] CHO B S, SCHUSTER T G, ZHU X Y, et al.. Passively driven integrated microfluidic system for separation of motile sperm [J]. Anal. Chem., 2003,75:1671-1675.[14] 李清岭,陈令新. 微流体驱动与控制技术[J]. 化学进展,2008,20(9):1406-1415. LI Q L, CHEN L X. Delivery and control techniques for microfluids [J]. Process in Chemistry, 2008, 20(9):1406-1415.(in Chinese)[15] KIM H H, OH J H, LIM J N. Design of valveless type piezoelectric pump for micro-fluid devices [J]. Procedia Chemistry, 2009, 1:353-356.[16] BENARD W L, KAHN H, HEUER A H. Thin-film shape-memory alloy actuated micropumps [J]. J. Microelectromech. Syst., 1998,7(2):245-251.[17] 科技导报编辑部. 2004年中国重大科学、技术与工程进展[J]. 科技导报,2005,23(2):58-61. THE EDITORIAL OFFICE OF SCIENCE AND TECHNOLOGY REVIEW. Important progress of science, technology and engineering in China in 2004 [J]. Science & Technology Review,2005, 23(2): 58-61. (in Chinese)[18] 耿 鑫,侯丽雅,王洪成,等. 微流体数字化技术制备基因芯片微阵列[J]. 光学 精密工程,2011,19(6):1344-1351. GENG X, HOU L Y, WANG H CH, et al.. Preparation of genechip microarrays using microfluid digitalization [J]. Opt. Precision Eng., 2011,19(6):1344-1351. (in Chinese)[19] 李清,侯丽雅,王洪成,等. 微流体数字化技术制备鱼卵微胶囊[J]. 化工学报,2011,62(4):1042-1047. LI Q, HOU L Y, WANG H CH, et al.. Preparation of fish reo microcapsules by using micro-fluidics digitalization [J]. CIESC Journal, 2011,62(4):1042-1047. (in Chinese)[20] 侯丽雅,王振琪,章维一,等. 金属微粉体脉冲输送的微特性实验[J]. 光学 精密工程, 2011,19(5):1030-1038. HOU L Y, WANG ZH Q, ZHANG W Y, et al.. Experiments of micro characteristics of pulse-transfer for metallic powders [J]. Opt. Precision Eng., 2011,19(5):1030-1038. (in Chinese)[21] 章维一,侯丽雅. 影响流体流动的方法及其装置和应用:中国,ZL03152948.8.2004. ZHANG W Y, HOU L Y. Method, apparatus and application of affecting fluid flow:China,ZL03152948.8.2004. (in Chinese)[22] 穆莉莉,侯丽雅,章维一. 石英微流体器件制备仪的研制与实验研究[J]. 中国机械工程,2010,21(13):1581-1585. MU L L, HOU L Y, ZHANG W Y. Development and experimental study of a quartz microfluidic device preparation apparatus [J]. China Mechanical Engineering, 2010,21(13):1581-1585. (in Chinese)
0
浏览量
371
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构