浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 空间科学与应用研究中心 空间科学实验技术研究室 北京,100190
3. 中国科学院 国家空间科学中心 空间科学实验技术研究室 北京,100190
4. 北京理工大学 物理学院 北京,100081
收稿日期:2012-06-20,
修回日期:2012-07-18,
纸质出版日期:2012-10-10
移动端阅览
俞文凯, 姚旭日, 刘雪峰, 翟光杰, 赵清. 压缩传感用于极弱光计数成像[J]. 光学精密工程, 2012,20(10): 2283-2292
YU Wen-kai, YAO Xu-ri, LIU Xue-feng, ZHAI Guang-jie, ZHAO Qing. Compressed sensing for ultra-weak light counting imaging[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2283-2292
俞文凯, 姚旭日, 刘雪峰, 翟光杰, 赵清. 压缩传感用于极弱光计数成像[J]. 光学精密工程, 2012,20(10): 2283-2292 DOI: 10.3788/OPE.20122010.2283.
YU Wen-kai, YAO Xu-ri, LIU Xue-feng, ZHAI Guang-jie, ZHAO Qing. Compressed sensing for ultra-weak light counting imaging[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2283-2292 DOI: 10.3788/OPE.20122010.2283.
为解决灵敏度达到单光子水平的面阵探测器件其单位像素上灵敏度有限和测量数多等问题
研制了具有极高灵敏度的成像系统来实现欠采样的极弱光成像探测。该成像系统基于光子计数成像技术和压缩感知理论
利用数字微镜器件(DMD)完成随机空间光调制
通过单光子点探测器收集光子
以计数形式记录下光强值。然后
利用算法重建出极弱光照明下的图像。文中设计了相关实验
研究了测量数、光强极弱程度和测量时间对成像质量的影响。最后
引入了图像质量评价标准和系统信噪比
分析对比了实验数据。结果表明
当测量数高于信号总维度的19.5%时
系统能完美成像
信噪比可低至2.843 8 dB
DMD单位像素上的平均光子数可低于1.106 count/s
成像的关键在于信号的波动大于噪声的波动。该成像系统基本满足了极弱光成像探测在光强、灵敏度和采样数等方面的要求。
Since array detectors with sensitivity to single photon level were limited by sensitivity on each pixel and needed large number of measurements
an imaging system with high sensitivity was designed to realize under-sampling ultra-weak light imaging detection. This imaging system based on photon counting technique and compressed sensing theory employed a Digital Micromirror Device(DMD) to complete the random spatial light modulation
and used a single photon point detector to collect photons. The total light intensity was recorded by the form of photon counting. Then
the image of an object under ultra-weak light illumination could be reconstructed by an algorithm. The influences of the number of measurements
ultra-weak light intensity level and measurement time on the quality of imaging were investigated by experiments. Furthermore
the evaluation criterion of reconstructed image and the Signal to Noise Ratio (SNR) of the system were discussed to analyze the experimental data.The experimental results show that when the number of measurements is greater than 19.5 percent of the dimension of data
it can acquire a good reconstruction
the SNR of the system can be even decreased to 2.843 8 dB
and the average count of photons on each pixel of the DMD can be lower than 1.106 count/s.Experiments also prove that the key of imaging lies in the fact that the fluctuation of signal should be greater than the fluctuation of noise. It concludes that this imaging system meets the demand of ultra-weak light imaging detection for ultra-weak light intensity
high sensitivity and few measurements.
RAPTOR PHOTONICS. The ultimate in low light sensitivity. (2012-4-21) http://www.raptorphotonics.com/technology/emccd-1.[2] ID QUANTIQUE. ID100 single-photon counting detector datasheet. (2011) http://www.idquantique.com.[3] MICRO PHOTON DEVICES. MPDs single-photon detection modules datasheet. (2011) http://www.micro-photon-devices.com/products_pdm.asp.[4] 杜克铭, 蒋远大, 翟光杰, 等. 基于压缩传感的光子计数成像系统[J]. 红外与激光工程, 2012,41(2):363-368. DU K M, JIANG Y D, ZHAI G J, et al.. Photon-counting imaging system based on compressive sensing [J]. Infrared and Laser Engineering, 2012,41(2):363-368. (in Chinese)[5] 尼启良, 何玲平, 刘世界, 等. 使用感应电荷位敏阳极的极紫外单光子计数成像系统[J]. 光学 精密工程, 2010, 18(12):2543-2548. NI Q L, HE L P, LIU SH J, et al.. Extreme ultraviolet single photon-counting imaging system based on induced charge position-sensitive anode [J]. Opt. Precision Eng., 2010, 18(12):2543-2548. (in Chinese)[6] 何玲平, 尼启良, 李敏,等. 楔条形阳极光子计数探测器成像性能的检测[J]. 光学 精密工程, 2009, 17(11):2699-2704. HE L P, NI Q L, LI M, et al.. Image performance of photon-counting imaging detector with wedge-and-strip anode [J]. Opt. Precision Eng., 2009,17(11):2699-2704. (in Chinese)[7] 崔东旭, 史继芳, 李宏光, 等. 光子计数法测量类针孔成像光斑照度[J]. 光学 精密工程, 2012,20(4):733-738. CUI D X, SHI J F, LI H G, et al.. Illuminance measurement of quasi-point source with photon counting method [J]. Opt. Precision Eng., 2012,20(4):733-738. (in Chinese)[8] SHAPIRO J H. Computational ghost imaging [J]. Phy. Rev. A, 2008, 78:061802(R).[9] KATZ O,BROMBERG Y,SILBERBERG Y. Compressive ghost imaging [J]. Appl. Phys. Lett., 2009,95:131110.[10] KOCSIS S, BRAVERMAN B,RAVETS S, et al.. Observing the average trajectories of single photons in a two-slit interferometer [J]. Sci., 2011, 332: 1170-1173.[11] ZHANG D,ZHAI Y H, WU L A, et al.. Correlated two-photon imaging with true thermal light [J]. Opt. Lett., 2005, 30:2354-2356.[12] PITTMAN T,SHIH Y H,STREKALOV D, et al.. Optical imaging by means of two-photon quantum entanglement [J]. Phys. Rev. A, 1995, 52(5):R3429-R3432.[13] BENNINK R, BENTLEY S,BOYD R W,et al.. Quantum and classical coincidence imaging [J].Phys. Rev. Lett., 2004, 92(3):0336011-0336014.[14] ALBOTA M,HEINRICHS R,KOCHER D, et al.. Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser [J]. App. Opt., 2002, 41(36):7671-7678.[15] HOWLAND G A,DIXON P B,HOWELL J C. Photon-counting compressive sensing laser radar for 3D imaging [J]. Appl. Opt., 2011, 50(31):5917-5920.[16] DONOHO D L. Compressed sensing [J].IEEE Trans. Inform. Theory, 2006, 52(4):1289-1306.[17] CAND S E J. Compressive sampling. Proc. Int. Cong. Mathematicians, Madrid, Spain, 2006:1433-1452.[18] BARANIUK R G. Compressive sensing [J]. IEEE Signal Process. Mag., 2007,24(4):118-121.[19] CANDS E J,ROMBERG J,TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans. Inform. Theory, 2006, 52(2):489-509.[20] STUDER V,BOBIN J,CHAHID M, et al.. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proceedings of the National Academy of Sciences, 2012:E1679-E1687.[21] 刘欣悦, 董磊, 王建立. 稀疏采样傅里叶望远镜成像[J]. 光学 精密工程, 2010, 18(3):521-527. LIU X Y, DONG L, WANG J L. Fourier telescopy imaging via sparse sampling [J]. Opt. Precision Eng., 2010,18(3):521-527. (in Chinese)[22] TAKHAR D, LASKA J N,BARANIUK R G, et al.. A new compressive imaging camera architecture using optical-domain compression. Proceedings of Computational Imaging IV at SPIE Electronic Imaging,San Jose,California,USA, 2006:43-52.[23] DUARTE M F,DAVENPORT M A,BARANIUK R G, et al.. Single-pixel imaging via compressive sampling [J]. IEEE Signal Processing Magazine, 2008,25(2):83-91.[24] ROMBERG J. Imaging via compressive sampling [J]. IEEE Sig. Proc Magazine, 2008, 25(2):14-20.[25] CANDS E J,TAO T. Near optimal signal recovery from random projections: Universal encoding strategies ?[J].IEEE Trans. Inform. Theory, 2006, 52(12):5406-5425.[26] CANDES E J, WAKIN M B. An introduction to compressive sampling [J]. IEEE Signal Process. Mag., 2008,25(2):21-30.[27] CANDS E J,ROMBENG J. Sparsity and incoherence in compressive sampling [J]. Inverse Probl., 2007, 23(3):969-985.[28] CANDS E J,ROMBERG J,TAO T. Stable signal recovery from incomplete and inaccurate measurements [J]. Commun. Pure Appl. Math., 2006,59(8):1207-1223.[29] MAGALH ES F,ARAUJO F,CORREIA M, et al.. Active illumination single-pixel camera based on compressive sensing [J]. Appl. Opt., 2011, 50(4):405-414.[30] WRIGHT S J,NOWAK R D, ROBERT D N, et al.. Sparse reconstruction by separable approximation [J].IEEE Signal Processing, 2009,57(7):2479-2493.[31] LI C B. An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing. MAI, 2010, 49(1):1-92.[32] 张砚, 汪源源, 李伟, 等. 基于全变分法重建光声图像[J]. 光学 精密工程, 2012, 20(1):204-212. ZHANG Y, WANG Y Y, LI W, et al.. Reconstruction of photoacoustic image based on total variation [J]. Opt. Precision Eng., 2012, 20(1):204-212. (in Chinese)[33] WANG Z,BOVIK A C,SHEIKH H R, et al.. Image quality assessment:from error measurement to structural similarity [J]. IEEE Transactios on Image Processing, 2004,13(4):600-612.
0
浏览量
544
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构