浏览全部资源
扫码关注微信
1. 中北大学 电子与计算机科学技术学院,山西 太原,030051
2. 山西大学 计算机与信息技术学院,山西 太原,030006
3. 计算智能与中文信息处理教育部重点实验室,山西 太原,030006
收稿日期:2012-05-07,
修回日期:2012-06-18,
纸质出版日期:2012-10-10
移动端阅览
杨剑, 韩建栋, 秦品乐. 视觉测量中可纠错的编码点识别及提取[J]. 光学精密工程, 2012,20(10): 2293-2299
YANG Jian, HAN Jian-dong, QIN Ping-le. Correcting error on recognition of coded points for photogrammetry[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2293-2299
杨剑, 韩建栋, 秦品乐. 视觉测量中可纠错的编码点识别及提取[J]. 光学精密工程, 2012,20(10): 2293-2299 DOI: 10.3788/OPE.20122010.2293.
YANG Jian, HAN Jian-dong, QIN Ping-le. Correcting error on recognition of coded points for photogrammetry[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2293-2299 DOI: 10.3788/OPE.20122010.2293.
针对视觉测量中经常发生椭圆点检测错误
影响三维场景的匹配
甚至影响三维重建的问题
设计了一种可纠错的编码点方案。将信息论中的信道可纠错编码方法用于编码点的设计
基于线性分组码将编码分为信息元和校验元
从而设计了生成矩阵和校验矩阵。在检测出错误时利用伴随式矩阵进行纠错
最后进行解码实现三维匹配。分析了编码点的解算及提取
从而大大提高了编码点的抗噪性。该方法不仅具有高的抗噪性能
同时可进一步拓展空间并且具有较好的实用价值。实验表明:文中设计的编码点方案完全可行
具有易于识别、可自行纠错的优点
在发生1位编码点错误的情况下可以实现100%纠错。
As the mistakes of detecting ellipse points can cause the three-dimensional data matching error
even the measuring task failure in a photogrammetric task
this paper proposes a new correcting scheme for error coded points. The scheme uses the channel code of information theory to design the code points
then divides the codes into information and verification elements based on the linear block codes
so that the generator matrix and the parity-check matrix are implemented. When errors happened
an adjoint matrix is used to correct the mistake. Finally
an encoding is performed to realize the three dimensional match. The proposed method improves the anti-noise property of code points greatly
and has good practical values and wide application prospects. Experiments show that the method is feasible completely and easy to identify. When one code point is wrong
the correctness probability is 100%.
周晓刚.立体视觉测量技术中编码匹配方法研究. 北京:北京机械工业学院,2003. ZHOU X G.The research on encoding point match of stereo vision measurement. Beijing:Beijing Institute of Machinery, 2003.[2] POLLARD S,MAYHEW J, FRISBY J. PMF: a stereo correspondence algorithm using a disparity gradient limit[J]. Perception, 1985, 14:449-470.[3] BAKER H H,BINFORD T O. Depth from edge and intensity based stereo. The 7th International Joint Conference on Artificial Intelligence, Vancouver, Canada,1981:631-636.[4] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.[5] 李晓峰,张瑜. 摄影测量中环状编码点的检测方法[J]. 现代制造工程,2012(2):117-121. LI X F,ZHANG Y. Detection algorithm on circular encoded point in photogrammetry[J]. Modern Manufacturing Engineering, 2012(2):117-121.[6] FRASER C S. Automation in digital close-range photogrammetry. Proc. First Trans Tasman Surveyors Conference, Newcastle, Australia, 1997:1-10.[7] NIEDER ST M,HANS-GERD M. Automatic deformation measurement with a digital still video camera. Processings of 4th Conference on Optical 3D Measurement Techniques, Zurich, Switzerland, 1997:266-271.[8] KEITH F, ANTHON V, NDIMI B. An inexpensive, automatic and accurate camera calibration method. Proceedings of the Thirteenth Annual Symposium of the Pattern Recognition Association of South Africa, 2002:115-120.[9] SHORTIS M R, SEAGER J W, ROBSON S, et al.. Automatic recognition of coded targets based on a hough transform and segment matching. Videometrics VII, Proceedings of the SPIE, 2003:202-208.[10] DONG M L, ZHOU X G, ZHU L Q, et al.. Automated image matching with coded points in stereo vision measurement[J]. Chinese Journal of Mechanical Engineering, 2005, 18(3):453-456.[11] AHN S J,RAUH W. Circular coded target for automation of optical 3D measurement and camera calibration[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2001, 15(6):905-919.
0
浏览量
574
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构