浏览全部资源
扫码关注微信
1. 苏州大学 机电工程学院,江苏 苏州,215021
2. 苏州大学 城市轨道交通学院,江苏 苏州,215131
收稿日期:2012-05-27,
修回日期:2012-06-28,
纸质出版日期:2012-10-10
移动端阅览
何志勇, 孙立宁, 黄伟国, 陈立国. 基于Otsu准则和直线截距直方图的阈值分割[J]. 光学精密工程, 2012,20(10): 2315-2323
HE Zhi-yong, SUN Li-ning, HUANG Wei-guo, CHEN Li-guo. Thresholding segmentation algorithm based on Otsu criterion and line intercept histogram[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2315-2323
何志勇, 孙立宁, 黄伟国, 陈立国. 基于Otsu准则和直线截距直方图的阈值分割[J]. 光学精密工程, 2012,20(10): 2315-2323 DOI: 10.3788/OPE.20122010.2315.
HE Zhi-yong, SUN Li-ning, HUANG Wei-guo, CHEN Li-guo. Thresholding segmentation algorithm based on Otsu criterion and line intercept histogram[J]. Editorial Office of Optics and Precision Engineering, 2012,20(10): 2315-2323 DOI: 10.3788/OPE.20122010.2315.
对二维Otsu法中类间离散度测度进行了分析
发现按该算法对被噪声污染图像的二维直方图进行划分时
所得两类的类内均值点容易远离主对角线
因而抗噪声能力不足。针对以上情况
本文提出了一种新算法
该算法基于二维直方图中直线阈值分割的思想
利用像素点的二维信息直接建立阈值直线的截距直方图;然后应用Otsu准则对该一维直方图求解最佳截距阈值
并应用该阈值和二维信息完成图像分割。对提出的算法与传统二维Otsu法进行了比较和分析
结果表明:提出的算法可以有效避免传统算法在抗噪方面的缺陷
当实验图像的噪声方差大于0.003且逐渐增加时
提出的算法抗噪表现稳健;另外
提出的算法计算阈值的速度比基于二维Otsu法的直分法和直线阈值法快2个数量级以上
占用内存空间更少。因而提出的算法是一种抗噪稳健且快速有效的阈值分割算法
更适于实时应用。
Two-dimensional (2-D) Otsu algorithm is analyzed. It is shown that when a 2-D histogram is segmented by 2-D Otsu threshold method
the within-class means is easily far from the main diagonal
so that the algorithm isn't robust enough to noises. This paper proposes a new algorithm. The new algorithm establishes a line intercept histogram directly from the 2-D information of images based on the line threshold segmentation concept. Then
it uses the Otsu criterion to find the best intercept threshold from the histogram. Furthermore
the 2-D information of images and the intercept threshold are adopted to implement the image segmentation. Compared the new algorithm with the 2-D Otsu algorithm
it demonstrates that the new algorithm can avoid both disadvantages of 2-D Otsu algorithm. Firstly
it improves the anti-noise ability. When the noise variance is more than 0.003 or stepup
it shows robustness to noises. Secondly
the processing speed of the new algorithm is faster than the fast Otsu algorithms based on 2-D histogram by two orders of magnitude
and it takes up more less memory. In conclusion
the proposed algorithm is robust anti-noise
more accurate segmentation and is suitable for applications in real time.
MEHMET S, BULENT S. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004,13(1):146-165.[2] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on System Man and Cybernetic, 1979,9(1):62-66.[3] SAHOO P K,SOLTANI S,WONG A K C,et al..A survey of thresholding techniques[J].Computer Vision,Graphics and Image Processing,1988,41:233-260. (in Chinese)[4] REZA F M, MOHAMED C. AdOtsu: An adaptive and parameterless generalization of Otsus method for document image binarization[J]. Pattern Recognition, 2012, 45:2419-2431.[5] 刘洋,田小建,王晴,等. 采用局部分形的高效图像分割方法在红外云图处理中的应用[J]. 光学 精密工程,2011,19(6):1367-1374. LIU Y, TIAN X J, WANG Q. Application of efficient image segmentation method based on local fractal in the infrared cloud image processing[J]. Opt. Precision Eng., 2011,19(6):1367-1374. (in Chinese)[6] 姚峰林,高世桥. 基于高速摄影动态测试微陀螺振动[J]. 光学 精密工程,2012, 20(1):165-170. YAO F L, GAO S Q. Dynamic test of vibration for micro machined gyroscope based on high speed photography[J]. Opt. Precision Eng., 2012,20(1):165-170. (in Chinese)[7] 程万胜,臧希枯,赵杰. 面向Otsu阈值搜索的PSO惯性因子改进方法[J]. 光学 精密工程, 2008, 16(10):1907-1912. CHENG W S, ZHANG X K, ZHAO J. Modified strategy to inertia weight in PSO for searching threshold of Otsu rule[J]. Opt. Precision Eng., 2008, 16(10):1907-1912. (in Chinese)[8] 刘建庄, 粟文青. 灰度图像的二维Otsu 自动阈值分割法[J]. 自动化学报,1993, 19(1):101-105. LIU J Z, LI W Q. Automatic thresholding of gray-level pictures using two-dimension Otsu method[J]. Acta Automatica Sinica, 1993,19(1):101-105. (in Chinese)[9] 汪海洋, 潘德炉, 夏德深. 二维Otsu自适应阈值选取算法的快速实现[J]. 自动化学报,2007, 33(9):968-971. WANG H Y, PAN D L, XIA D S. A fast algorithm for two-dimensional Otsu adaptive threshold algorithm[J]. Acta Automatica Sinica, 2007, 33(9):968-971. (in Chinese)[10] 范九伦, 赵凤. 灰度图像的二维Otsu曲线阈值分割法[J]. 电子学报, 2007, 35(4):751-755. FAN J L, ZHAO F. Two-dimensional Otsus curve thresholding segmentation method for gray-level images[J]. Acta Electronic Sinica, 2007,35(4):751-755. (in Chinese)[11] 吴一全,潘 喆,吴文怡. 二维直方图区域斜分阈值分割及快速递推算法[J]. 通信学报,2008, 29(4):77-83. WU Y Q, PAN Z, WU W Y. Image thresholding based on two-dimensional histogram oblique segmentation and its fast recurring algorithm[J]. Journal on Communications, 2008, 29(4):77-83. (in Chinese)[12] CHEN Q, ZHAO L, LU J, et al.. Modified two-dimensional Otsu image segmentation algorithm and fast realisation [J]. IET Image Processing, 2012,6(4):426-433.[13] 汪荣贵, 吴昊, 方帅,等. 一种新的自适应二维Otsu 图像分割算法研究[J]. 中国科学技术大学学报, 2010,40(8):841-847. WANG R G, WU H, FANG S, et al.. A new adaptive two-dimensional Otsu image segmentation algorithm research[J]. Journal of University of Science and Technology of China, 2010, 40(8):841-847. (in Chinese)[14] PUTHIPONG S, THITIWAN S. A two-stage Otsus thresholding based method on a 2D histogram. 2011 IEEE 7th International Conference on Intelligent Computer Communication and Processing, 2011:345-348.[15] 张新明,孙印杰,郑延斌. 二维直方图准分的Otsu图像分割及其快速实现[J]. 电子学报, 2011, 39(8):1778-1784. ZHANG X M, SUN Y J, ZHENG Y B. Precise two-dimensional Otsu's image segmentation and its fast recursive realization[J]. Acta Electronic Sinica, 2011, 39(8):1778-1784. (in Chinese)
0
浏览量
531
下载量
20
CSCD
关联资源
相关文章
相关作者
相关机构