浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学院大学,北京 100039
收稿日期:2012-03-26,
修回日期:2012-05-15,
纸质出版日期:2012-11-10
移动端阅览
胡春晖, 颜昌翔. 基于高斯光学齐次坐标变换的光机装调[J]. 光学精密工程, 2012,20(11): 2353-2359
HU Chun-hui, YAN Chang-xiang. Optical-mechanical assembly based on Gaussian optical homogeneous coordinate transformation[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2353-2359
胡春晖, 颜昌翔. 基于高斯光学齐次坐标变换的光机装调[J]. 光学精密工程, 2012,20(11): 2353-2359 DOI: 10.3788/OPE.20122011.2353.
HU Chun-hui, YAN Chang-xiang. Optical-mechanical assembly based on Gaussian optical homogeneous coordinate transformation[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2353-2359 DOI: 10.3788/OPE.20122011.2353.
高性能光学系统装调的调整量与光机结构设计相关
而装调所用参考坐标系往往与光学设计所用的坐标系不同。为了精确描述调整量对高斯像位置的影响
本文在基准坐标系下建立了引入装调误差量的高斯光学齐次坐标变换模型。针对具体的光机结构
建立了高斯像像旋和离焦对调整变量的函数
据此计算小的结构变化导致的离轴三反望远物镜高斯像面的移动
结果显示其与光学设计软件对最佳像面位置优化结果的相对差小于4%。利用方差合成方法建立线性规划模型
对17个装调变量做了最宽松的误差分配方案。用Monte Carlo法验证了分配方案
结果表明
该方案在300 m调焦能力下满足各视场10 m的焦深要求。本文的方法忽略了复杂、微小像差的影响
适用于含多个已做内部精装的光学组件或平面反射镜的复杂成像光学系统的装调。
The assembly variables of a high performance optical system are dependent on the design of optical and mechanical structure
however
the reference coordinates used in the system assembly are mostly different from those used in optical design. To describe paraxial image motions due to adjustments precisely
the Gaussian optical homogeneous coordinate transformation model with assembly error variables was established under a reference coordinate. According to specified optical-mechanical design
the Gaussian image rotation and defocus as functions of assembly variables were described. Then
the paraxial image motion induced by small deformation of a three-mirror off-axis telescope was calculated
which shows a relative difference less than 4% compared with that from the optical software optimized image location. By the variance combining method
a linear optimization model was solved to get the loosest error budget for 17 variables and the Monte-Carlo simulation was used to verify the error budget. It indicates that all fields meet the focus depth of 10 m within the focusing ability of 300 m. This method ignores subtle influences caused by aberration
and is favorable for optical systems consisting of plane optical components and near aberration-free components.
PARKS, R E. Alignment of optical systems. International Optical Design Conference, 2006, paper: MB4.[2] 张斌,张晓辉,韩昌元.光学系统计算机辅助装调中的一种优化算法[J]. 光学 精密工程,2000,8(3):273-277. ZHANG B, ZHANG X H, HAN CH Y. Algorithm for misalignment determination in computer-aided alignment of optical system [J]. Opt. Precision Eng., 2000, 8(3): 273-277.(in Chinese)[3] 杨晓飞. 三反射镜光学系统的计算机辅助装调技术研究.长春:中国科学院长春光学精密机械与物理研究所, 2004: 92-96. YANG X F. Study on the computer-aided alignment of three-mirror optical system. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, 2004: 92-96.(in Chinese)[4] 张庭成,王涌天,常军,等. 反射变焦系统的计算机辅助装调[J]. 光学学报,2010,30(6):1688-1692. ZHANG T CH, W Y T, CHANG J, et al.. Computer-aided alignment for reflective zoom systems[J]. Acta Optica Sinica, 2010,30 (6):1688-1692. (in Chinese)[5] 张文静,刘文广,刘泽金.一种非稳腔计算机辅助装调方法的数值模拟[J]. 光学学报,2008,28(3): 516-521. ZHANG W J, LIU W G, LIU Z J. Numerical simulation for computer-aided precise alignment of unstable resonator [J]. Acta Optica Sinica, 2008,28 (3):516-521.(in Chinese)[6] LEE H, DALTON G B, TOSH I A J, et al.. Computer-guided alignment I: phase and amplitude modulation of alignment-influenced optical wavefront [J]. Optics Express, 2007, 15(6): 3127-3139.[7] LEE H, DALTON G B, TOSH I A J, et al.. Computer-guided alignment II: optical system alignment using differential wavefront sampling[J]. Optics Express, 2007, 15(23): 15424-15437.[8] LEE H, DALTON G B, TOSH I A J, et al.. Computer-guided alignment III: description of inter-element alignment effect in circular-pupil optical systems[J]. Optics Express, 2008, 16(15): 10992-11006.[9] KIM S H, YANG H S, KIM S W, et al.. Merit function regression method for efficient alignment control of two-mirror optical systems[J].Optics Express, 2007, 15(8): 5059-5068.[10] 白素平,王春艳,庞春颖.基于坐标变换的动态光学成象性质研究[J]. 光子学报,2001,30(7):846-850. BAI S P, WANG CH Y, PANG CH Y. Imaging features of optics system in motion based on coordinate transformation [J]. Acta Photonica Sinica, 2001, 30(7): 846-850.(in Chinese)[11] 王俊,卢锷,王家骐.光学系统动态像点移动的坐标变换法[J]. 光学 精密工程, 1999,7(6): 48-55. WANG J, LU E, WANG J Q. Coordinates transformation method on image motion of dynamic optical system[J].Opt. Precision Eng., 1999, 7(6):48-55. (in Chinese)[12] HUBBARD R. ATST System Error Budgets . http://atst.nso.edu/files/docs/spec-009.pdf, 30 April 2009.[13] 明名,王建立,张景旭,等. 大口径望远镜光学系统的误差分配与分析[J]. 光学 精密工程,2009,17(1):104-108. MING M, WANG J L, ZHANG J X, et al.. Error budget and analysis for optical system in large telescope [J]. Opt. Precision Eng., 2009, 17(1): 104-108.(in Chinese)[14] 颜昌翔,王家骐. 航相机像移补偿计算的坐标变换方法[J]. 光学 精密工程,2000,8(3):203-207. YAN CH X, WANG J Q. Method of coordinate transformation for IM&IMC calculation in aerospace camera system [J]. Opt. Precision Eng., 2000, 8(3): 203-207. (in Chinese)[15] 李慧,沈湘衡. 光电经纬仪轴系误差仿真计算的新方法[J]. 红外与激光工程,2008,37(2): 334-337. LI H, SHEN X H. New shafting error simulating method of photoelectric theodolite[J]. Infrared and Laser Engineering, 2008, 37(2): 334-337. (in Chinese)[16] 王芳,贾涛,张春林. 应用坐标变换动态修正光电经纬仪脱靶量[J]. 光学 精密工程,2009,17(12):2939-2945. WANG F, JIA T, ZHANG CH L. Dynamic correction of target deviations for photoelectric theodolites by coordinate transform [J]. Opt. Precision Eng., 2009, 17(12): 2939-2945. (in Chinese)[17] UPTON R, CHOU M, RIMMELE T. Force-optimized alignment for optical control of the advanced technology solar telescope[J]. Applied Optics, 2010, 49(31): G105-G113.
0
浏览量
376
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构