浏览全部资源
扫码关注微信
1. 中国科学院大学, 北京 100049,中国
2. 中国科学院 长春光学机密机械与物理研究所,吉林 长春 130033
收稿日期:2012-04-07,
修回日期:2012-06-16,
纸质出版日期:2012-11-10
移动端阅览
韩建, 巴音贺希格, 李文昊, 孔鹏. 全息光栅制作中光栅掩模槽形形状随光刻胶特性曲线的演化规律[J]. 光学精密工程, 2012,20(11): 2380-2388
HAN Jian, Bayanheshig, LI Wen-hao, KONG Peng. Groove profile evolution of grating masks for different photoresist response curves in fabrication of holographic gratings[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2380-2388
韩建, 巴音贺希格, 李文昊, 孔鹏. 全息光栅制作中光栅掩模槽形形状随光刻胶特性曲线的演化规律[J]. 光学精密工程, 2012,20(11): 2380-2388 DOI: 10.3788/OPE.20122011.2380.
HAN Jian, Bayanheshig, LI Wen-hao, KONG Peng. Groove profile evolution of grating masks for different photoresist response curves in fabrication of holographic gratings[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2380-2388 DOI: 10.3788/OPE.20122011.2380.
为分析光栅槽形形成的基本原理及槽形随光刻胶特性曲线的演化规律
建立了显影过程中光栅掩模槽形形成的演化模型。基于光刻胶溶解速率在不同曝光量区间的变化
将光刻胶特性曲线分成3个不同区域并分析各区域在光栅掩模槽形形成中的作用
讨论了在不同光刻胶特性曲线条件下光栅掩模槽形的演化规律。结果表明:当光刻胶非线性效应显著时
掩模槽形易形成矩形或梯形
此时槽深由原始胶厚决定;当光刻胶线性效应较显著时
槽形形成正弦形同时槽深有所减小。该模型正确反映了光栅槽形随光刻胶特性曲线变化的演化规律
为通过控制光刻胶特性曲线制作多种掩模槽形提供了理论依据及方法。
To analyze the principle of profile formation for grating masks and the evolution of photoresist response curves
a simulation model of profile formation for grating masks in development was established. Based on the difference of photoresist dissolution rate in the different regions
the complete photoresist curve was divided into three sections
the effect of each section in the profile formation of grating masks was analyzed
then the simulation surface-relief profile model was presented. The experimental results indicate that the groove profile inclines to be rectangular or trapezoidal when the nonlinearity of photoresist response curve is remarkable
and the groove depth is mainly decided by the initial photeresist thickness. The groove profile is sinusoidal when the linearity response is strong
and the groove depth is also always decreased under this condition. The experiment shows that the proposed model can predict the profile evolution for the different photoresist curves and it provides a directive theory for fabricating the various profile masks during development according to the different photoresist response curves.
孟祥峰,李立峰. 提高离子束刻蚀亚微米光栅侧壁陡直度的方法[J]. 光学学报,2008, 28(1): 189-193. MENG X F, LI L F. Methods for increasing sidewall steepness of reactiveion-beam etched, sub-micrometer-period gratings[J]. Acta Optica Sinica, 2008, 28(1): 189-193. (in Chinese)[2] 赵博,齐向东. 高效平面全息衍射光栅的获取方法[J]. 光学 精密工程,2001, 9(2):109-114. ZHAO B,QI X D. Manufacturing of high efficient holographic diffraction gratings[J]. Opt. Precision Eng., 2001,9(2):109-114.(in Chinese)[3] 巴音贺希格,邵先秀,崔继承,等. 制作平面全息光栅的离轴抛物镜/洛艾镜干涉系统[J]. 光学 精密工程,2011,19(1):56-63. BAYANHESHIG,SHAO X X,CUI J CH, et al.. Off-axis parabolic/Lloyd mirror interferometric systems for manufacturing plane holographic gratings[J]. Opt. Precision Eng., 2011,19(1):56-63. (in Chinese)[4] 谭鑫,李文昊,巴音贺希格,等. 紫外全息闪耀光栅的制作[J]. 光学 精密工程,2010, 18(7):1536-1542. TAN X, LI W H, BAYANHESHIG, et al.. Fabrication of ultraviolet holographic blazed graing[J]. Opt. Precision Eng., 2010,18(7):1536-1542. (in Chinese)[5] 巴音贺希格,张浩泰,李文昊. 凹球面基底离心式涂胶的数学模型及实验验证[J]. 光学 精密工程,2008, 16(2):229-234. BAYANHESHIG,ZHANF H T, LI W H. Mathematic model and experiment verification of spin coating on concave spherical substrate[J]. Opt. Precision Eng., 2008, 16(2):229-234. (in Chinese)[6] DILL F H, HORNBERGER W P, HAUGE P S, et al.. Characterization of positive photoresist[J]. IEEE. Trans. Electrom Devices, 1975, 22(7): 445-452.[7] MACK C A. Development of positive photoresist[J]. Electrochem.Soc., 1987, 134:148-152.[8] MELLO B A, COSTA I F, LIMA C R A, et al.. Developed profile of holographically exposed photoresist gratings[J], Appl. Opt., 1995, 34(4): 597-603.[9] ZANKE C, GOMBERT A, ERDMANN A, et al.. Fine-tuned profile simulation of holographically exposed photoresist gratings[J]. Opt. Comm., 1998, 154(1): 109-118.[10] BRITTEN J A, BOYD R D, SHORE B W. In-situ end-point detection during development of submicrometer grating structures in photoresist[J]. Opt. Eng., 1995, 34(2):474-479.[11] 赵劲松,李立峰,吴振华. 全息光栅实时显影监测曲线的理论模拟[J]. 光学学报,2004, 24(8): 1146-1150. ZHAO J S, LI L F, WU ZH H. Modeling of In-Situ Monitoring curves during development of holographic gratings[J]. Acta Optica Sinica, 2004, 24(8): 1146-1150. (in Chinese)[12] 赵劲松,李立峰,吴振华. 全息光栅制作中的实时潜像自监测技术[J]. 光学学报,2004, 24(6): 851-858. ZHAO J S, LI L F, WU ZH H. In-situ self-monitoring of latent image in fabrication of holographic gratings[J]. Acta Optica Sinica, 2004, 24(6): 851-858. (in Chinese)[13] 孔鹏,巴音贺希格,李文昊,等. 全息光栅非对称曝光显影的理论模拟及实时监测[J]. 光学学报,2010, 30(1): 65-69. KONG P, BAYANHESHIG, LI W H, et al.. Modeling and in-situ monitoring of the asymmetric exposure and development of holographic grating[J]. Acta Optica Sinica, 2010, 30(1): 65-69. (in Chinese)[14] 赵劲松,李立峰,吴振华. 一种控制矩形光刻胶光栅槽深和占宽比的方法[J]. 光学学报,2004, 24(9): 1285-1291. ZHAO J S, LI L F, WU ZH H. Method for controlling groove depth and duty cycle of rectangular photoresist gratings[J]. Acta Optica Sinica, 2004, 24(9): 1285-1291. (in Chinese)[15] 刘全,万华,吴建宏. 低陡度光刻胶光栅槽形研究[J]. 光子学报, 2008,37(7):1401-1405. LIU Q, WAN H, WU J H. Research on acquisition of low gradient photoresist gratings[J]. Acta Photonica Sinica,2008,37(7):1401-1405. (in Chinese)[16] 陈刚,吴建宏,刘全. 全息光栅光刻胶掩模槽形演化及其规律研究[J]. 光学技术,2008, 34(1): 133-140. CHEN G, WU J H, LIU Q. Study on the profile evolution of the photoresist grating mask and its law[J]. Optical Technique, 2008,34(1):133-140. (in Chinese)[17] MONTOYA J C, CHIH H CH, HEILMANN P K, et al.. Doppler writing and linewidth control for scanning beam interference lithography[J]. J.Vac.Sci.Technol.B, 2005, 23(6), 2640-2645.[18] ARTHUR T, HO W K, KIEW C M, et al.. Real-time control of photoresist development process[J]. SPIE, 2005, 5755: 244-250.
0
浏览量
673
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构