浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
收稿日期:2012-03-05,
修回日期:2012-04-07,
纸质出版日期:2012-11-10
移动端阅览
陈茂胜, 金光, 张涛, 戴路, 朴永杰, 周美丽, 曲宏松. 积分反馈自抗扰控制力矩陀螺框架伺服系统设计[J]. 光学精密工程, 2012,20(11): 2424-2432
CHEN Mao-sheng, JIN Guang, ZHANG Tao, DAI Lu, PIAO Yong-jie, ZHOU Mei-li, QU Hong-song. Design of gimbal servo system of CMG using active disturbance rejection control with integral feedback[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2424-2432
陈茂胜, 金光, 张涛, 戴路, 朴永杰, 周美丽, 曲宏松. 积分反馈自抗扰控制力矩陀螺框架伺服系统设计[J]. 光学精密工程, 2012,20(11): 2424-2432 DOI: 10.3788/OPE.20122011.2424.
CHEN Mao-sheng, JIN Guang, ZHANG Tao, DAI Lu, PIAO Yong-jie, ZHOU Mei-li, QU Hong-song. Design of gimbal servo system of CMG using active disturbance rejection control with integral feedback[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2424-2432 DOI: 10.3788/OPE.20122011.2424.
设计了永磁同步电机直驱的控制力矩陀螺(CMG)框架伺服系统
并提出积分反馈自抗扰控制(ADRC)伺服跟踪算法用于实时跟踪CMG操纵律输出的框架角速度指令。首先
采用电机轴电流i
d
=0的矢量控制策略建立了CMG框架伺服系统的数学模型;然后
分析摩擦力矩和齿槽力矩对CMG框架伺服系统性能的影响
并在Matlab中搭建速度环采用ADRC的框架伺服仿真系统;最后
对框架伺服系统的速度环分别采用模糊PI、ADRC、积分反馈ADRC算法进行实验。实验结果表明:采用积分反馈ADRC算法跟踪0.1~2.0 rad/s时
稳态精度为0.005~0.012 rad/s;跟踪0.0~0.1 rad/s时
稳态精度为0.001~0.005 rad/s
临界爬行速度为0.003 rad/s;跟踪2sin(
t
) rad/s速度曲线时
幅值误差为0.55%
相位滞后0.09978 rad。结果满足CMG框架伺服系统精度高、鲁棒性强的要求。
The gimbal servo system for a Control Moment Gyroscope(CMG) directly driven by a Permanent Magnet Synchronous Motor (PMSM) was designed
and an Active Disturbance Rejection Control(ADRC) algorithm with integral feedback was proposed. Firstly
the mathematic model for the CMG gimbal servo system was built by using an oriented control strategy in shaft current i
d
=0. Then
the effects of both frictional and alveolar torques on the performance of gimbal servo system were analyzed. A simulation system for gimbal servo system which used the ADRC as a speed loop was built up in Matlab. Finally
the hardware experiments of fuzzy PI
ADRC and the ADRC with integral feedback were carried out. Test and experiments show that the steady state accuracy is 0.005-0.012 rad/s when a step velocity of 0.1-2.0 rad/s is tracked by using the ADRC.
and that is 0.001-0.005 rad/s and the crawling speed is 0.003 rad/s when the step velocity of 0.0-0.1 rad/s is tracked by using the ADRC with integral feedback. Furthermore
the relative amplitude error is 0.55% and the phase error is 0.099 78 rad
when the gimbal system tracks the 2sin(t) rad/s by using the ADRC with integral feedback. The proposed gimbal servo system of CMG satisfies the demands of high precision and robustness.
陈茂胜,金光,安源,等. 采用自适应PI控制的单框架控制力矩陀螺角动量飞轮系统的设计[J]. 光学精密工程, 2011,19(5): 1075-1081. CHEN M SH, JIN G, AN Y, et al.. Design of angular momentum wheel in SGCMG using adaptive compensation PI control strategy [J].Opt. Precision Eng.,2011,19(5): 1075-1081. (in Chinese)[2] 李海涛,房建成,韩邦成,等. 一种双框架磁悬浮控制力矩陀螺框架伺服系统扰动抑制方法研究[J]. 宇航学报,2009,30(6):2199-2205. LI H T, FANG J CH, HAN B CH, et al..Study on the system disturbance rejection method used in the gimbal servo system of double gimbal magnetically suspended control moment gyro[J].Journal of Astronautics, 2011, 30(6):2199-2205. (in Chinese)[3] 张激扬,周大宁,高亚楠. 控制力矩陀螺框架控制方法及框架转速测量方法[J]. 空间控制技术与应用,2008,34(2):23-28. ZHANG J Y, ZHOU D N, GAO Y N. Gimbal control technique and gimbal rate measurement method for the control moment gyro[J].Aerospace Control and Application,2008,34(2):23-28. (in Chinese)[4] 张成,王富东,李胜宁,等. 基于MATLAB/Simulink的永磁同步电机矢量控制[J]. 苏州大学学报:工科版,2011,31(3):63-67. ZHANG CH, WANG F D, LI SH N, et al..The vector control of PMSM based on MATLAB/simulink[J]. Journal of Soochow University Engineering Science Edition, 2011, 31(3):63-67.(in Chinese)[5] 许振伟. 永磁交流伺服系统及其控制策略研究. 浙江大学博士论文,2003. XU ZH W. Research on AC PMSM Servo System and Control Strategy. zhejiang: Graduate University of Zhejiang University, 2003. (in Chinese)[6] 郭劲,陈娟,任一平. 光电跟踪系统低速干扰力矩动态补偿[J]. 电气传动和自动控制,2003,25(6): 19-22. GUO J, CHEN J, REN Y P. Dynamic compensation of Low-speed disturbances for optoelectronic tracking system [J]. Electric Drive & Automatic Control, 2003, 25(6): 19 -22. (in Chinese)[7] 陈娟,张淑梅,黄艳秋,等. 电机波动力矩的重复学习控制补偿[J]. 光学 精密工程,2003,11(4):390-393. CHEN J, ZHANG SH M, HUANG Y Q, et al.. Repetitive study control to compensate motor moment fluctuation [J]. Optics and Precision Engineering, 2003, 11(4): 390-393, (in Chinese)[8] 邱晓波,窦丽华,单东升,等. 光电跟踪系统自抗扰伺服控制器的设计[J]. 光学 精密工程,2010,18(1): 220-226. QIU X B, DOU L H, DAN D SH, et al.. Design of active disturbance rejection controller for electro-optical tracking servo system[J]. Opt. Precision Eng., 2010,18(1): 220-226. (in Chinese)[9] 廉明,韩振宇,富宏亚. 自抗扰技术在卫星姿态模拟系统中的应用[J]. 光学 精密工程,2010,18(3): 616-622. LIAN M, HAN ZH Y, FU H Y. Application of active disturbances rejection control technique to satellite attitude simulation system[J].Opt. Precision Eng.,2010,18(3): 616-622. (in Chinese)[10] 黄浦,葛文奇,李友一,等. 航空相机前向像移补偿的线性自抗扰控制[J]. 光学 精密工程,2011,19(4): 616-622. HUANG P, GE W Q, LI Y Y, et al..Linear auto disturbance rejection control of forward image motion compensation in aerial cameras[J]. Opt. Precision Eng., 2011,19(4): 616-622.(in chinese)[11] PAN J F, KWOK S C, CHEUNG N C, et al..Auto disturbance rejection speed control of linear switched reluctance motor. Proceedings of Fortieth Industry Applications Conference Annual Meeting, IEEE, USA, 2005:2491-2497.[12] GAO Z Q.Scaling and bandwidth-parameterization based controller tuning. Proceedings of American Control Conference, Colorado,IEEE,USA,2003: 4989 -4996.
0
浏览量
499
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构