浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 吉林大学 通信工程学院,吉林 长春,130025
收稿日期:2012-05-21,
修回日期:2012-07-17,
纸质出版日期:2012-11-10
移动端阅览
宫勋, 白越, 赵常均, 高庆嘉, 彭程, 田彦涛. Hex-Rotor无人飞行器及其飞行控制系统设计[J]. 光学精密工程, 2012,20(11): 2450-2458
GONG Xun, BAI Yue, ZHAO Chang-jun, GAO Qing-jia, PENG Cheng, TIAN Yan-tao. Hex-Rotor aircraft and its autonomous flight control system[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2450-2458
宫勋, 白越, 赵常均, 高庆嘉, 彭程, 田彦涛. Hex-Rotor无人飞行器及其飞行控制系统设计[J]. 光学精密工程, 2012,20(11): 2450-2458 DOI: 10.3788/OPE.20122011.2450.
GONG Xun, BAI Yue, ZHAO Chang-jun, GAO Qing-jia, PENG Cheng, TIAN Yan-tao. Hex-Rotor aircraft and its autonomous flight control system[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2450-2458 DOI: 10.3788/OPE.20122011.2450.
提出了一种Hex-Rotor无人飞行器以克服现有多旋翼飞行器的欠驱动和强耦合特性对其飞行控制效果的影响
利用6个旋翼独特的结构配置来保证飞行器独立控制空间六自由度的能力。介绍了这种新型飞行器的结构特点并建立其动力学模型
引入滤波反步法与自抗扰算法设计了具有双环并行结构的飞行控制系统
在数字仿真中实现了飞行器的空间六自由度独立控制并克服了未知外部扰动以及模型不确定性带来的影响。结果显示
原型机试飞实验中
飞行器的水平位移跟踪误差不超过4 m
高度误差不超过3 m
姿态角误差不超过0.05 rad
均保持在传感器的测量误差范围内
飞行器较为准确地跟踪了期望指令。仿真和实验结果证明了该新型Hex-Rotor飞行器具有期望的六自由度独立控制能力
建立的数学模型准确
设计的飞行控制系统能够实现轨迹与姿态跟踪飞行。
A novel Hex-Rotor aircraft was proposed to overcome the effect of under-actuation and strong coupling characteristics on the flight performance of existing multi-rotor aircrafts. Based on the unique configuration of six driving rotors
the Hex-Rotor aircraft has the ability to control the space 6-DOF channels independently. First
the structures and characteristics of the Hex-Rotor aircraft were introduced and its dynamic model was established. Then
an autonomous flight control system with a parallel double-loop structure was designed
in which the command-filter backstepping approach was introduced into the attitude stability augmentation control loop
and the translational controller based on the active disturbance rejection control technique was used in the position loop. Finally
the total independent control of the aircraft on 6-DOF channels was achieved in the numerical simulation and the influences of unknown external disturbances and model uncertainties on the flight control performance were overcome. The prototype experiment results indicate that the horizontal tracking errors
altitude errors and attitude errors for the aircraft are limited in 4 m
3 m
and 0.05 rad
respectively
which are all according with the precision ranges of measurement units and mean that the prototype has tracked the reference translational and attitude commands accurately. The simulation and experimental results verify that the designed Hex-Rotor aircraft has desired maneuvering capability
and the control system is able to guarantee the autonomous tracking flight of the aircraft.
CASTILLO P, LOZANO R, DZUL A. Stabilization of a mini rotorcraft with four rotors[J]. IEEE Control Systems Magazine, 2005: 45-55.[2] ZHANG R, QUAN Q, CAI K Y. Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances[J]. IET Control Theory Appl., 2011, 5(9): 1140-1146.[3] DAS A, SUBBARAO K, LEWIS F. Dynamic inversion with zero-dynamics stabilization for quadrotor control[J]. IET Control Theory Appl., 2009. 3(3): 303-314.[4] ZUO Z. Trajectory tracking control design with command-filtered compensation for a quadrotor[J]. IET Control Theory Appl., 2010.4(11): 2343-2355.[5] ZAIRI S, HAZRY D. Adaptive neural controller implementation in autonomous mini aircraft quadrotor (AMAC-Q) for attitude control stabilization. Proceedings of 2011 IEEE 7th International Colloquium on Signal Proceeding and its Applications, Penang, Malaysia, 2011: 84-89.[6] CHEN X J, LI D, XU Z J, et al.. Robust control of quadrotor MAV using self-organizing interval type-II fuzzy neural networks (SOIT-IIFNNs) controller[J]. International Journal of Intelligent Computing and Cybernetics, 2011, 4(3): 397-412.[7] 陈向坚, 李迪, 白越, 等. 模糊神经网络在自适应双轴运动控制系统中的应用[J]. 光学 精密工程, 2011, 19(7): 1643- 1650. CHEN X J, LI D, BAI Y, et al.. Application of type-II fuzzy neural network to adaptive double axis motion control system[J]. Opt. Precision Eng.,2011, 19(7): 1643-1650. (in Chinese)[8] NIJMEIJER H, VAN DER SHAFT A J. Nonlinear Dynamic Control Systems[M]. Springer Verlag, 1990.[9] FAEELL J A, POLYCARPOU M, DONG W J. Command filtered backstepping[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1391-1395.[10] 韩京清. 从PID技术到"自抗扰控制"技术[J]. 控制工程, 2002, 9(3): 13-18. HAN J Q. From PID technique to "active disturbances rejection control" method[J]. Control Engineering of China, 2002, 9(3): 13-18.(in Chinese)[11] 邱晓波, 窦丽华, 单东升, 等. 光电跟踪系统自抗扰伺服控制器的设计[J]. 光学 精密工程, 2010, 18(1): 220-226. QIU X B, DOU L H, SHAN D S, et al.. Design of active disturbance rejection controller for electro-optical tracking servo system[J]. Opt. Precision Eng., 2010, 18(1): 220-226.[12] 廉明,韩振宇,富宏亚. 自抗扰技术在卫星姿态模拟系统中的应用[J]. 光学 精密工程, 2010, 18(3): 616-622. LIAN M, HAN ZH Y, FU H Y. Application of active disturbances rejection control technique to satellite attitude simulation system[J]. Opt. Precision Eng., 2010, 18(3): 616-622. (in Chinese)
0
浏览量
292
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构