浏览全部资源
扫码关注微信
广东工业大学 机电工程学院,广东 广州,510006
收稿日期:2012-07-14,
修回日期:2012-08-30,
纸质出版日期:2012-11-10
移动端阅览
路家斌, 阎秋生, 潘继生, 高伟强. 电磁流变效应微磨头加工的电磁耦合协同作用机理实验[J]. 光学精密工程, 2012,20(11): 2485-2491
LU Jia-bin, YAN Qiu-sheng, PAN Ji-sheng, GAO Wei-qiang. Experiments of synergistic effect of electro-magnetically coupled field in EMR finishing[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2485-2491
路家斌, 阎秋生, 潘继生, 高伟强. 电磁流变效应微磨头加工的电磁耦合协同作用机理实验[J]. 光学精密工程, 2012,20(11): 2485-2491 DOI: 10.3788/OPE.20122011.2485.
LU Jia-bin, YAN Qiu-sheng, PAN Ji-sheng, GAO Wei-qiang. Experiments of synergistic effect of electro-magnetically coupled field in EMR finishing[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2485-2491 DOI: 10.3788/OPE.20122011.2485.
采用正交试验方法比较了锥形工具旋转和工作台旋转两种状态下的定点加工效果
实验研究了微磨头加工过程中的电磁耦合协同作用机理。在电磁耦合场中
固相粒子被极化形成电偶极子。当锥形工具旋转时
旋转的电偶极子由于洛伦兹力引起的自旋力偶的作用发生原位振动
对工件表面产生有规律的冲击
促进了材料去除
相对于工作台旋转模式其材料去除深度明显加大;但在电磁场较弱的微磨头外围
原位振动会对链串结构造成破坏
从而减小材料去除范围。电磁场耦合方式对电磁流变协同效应有很大影响
磁场励磁电压对材料去除的影响程度最大
其次是电场电压和旋转速度。在本文试验条件下
当锥形工具旋转且励磁电压较低(5 V)时具有较好的电磁流变协同加工效果。
Orthogonal tests in two rotational modes (the rotational tool mode and the rotational worktable mode) are conducted to confirm the synergistic effect mechanism of an electro-magnetically coupled field in the Electro-Magneto-Rheological(EMR) effect-based tiny-grinding wheel finishing. Under the electro-magnetically coupled field
the EMR polarized particles of the rotational tiny-grinding wheel generate the Lorentz force and the spin couple
then the in situ vibration of the EMR particles due to the spin couple can impact regularly on the workpiece surface and promote material removal
so the material removal depth in the rotational tool mode is larger than that in the rotational worktable mode. However
if the interaction force of the particle chains is weak
the in situ vibration will break the particle chains and reduce the material removal. The couple mode of electric and magnetic field has a significant influence on the machining efficiency of the EMR finishing. It shows a good synergistic effect of the EMR finishing in the voltage of electric field of 1 kV and the excitation voltage of magnetic field of 5 V in the rotational tool mode.
ZHONG Z W. Recent advances in polishing of advanced materials[J]. Materials and Manufacturing Processes, 2008, 23(5): 449-456.[2] KORDONSKI W, GORODKIN S. Material removal in magnetorheological finishing of optics[J]. Applied Optics, 2011, 50: 1984-1994.[3] TANAKA T. Polishing performance of electro- rheological fluid of polymerized liquid crystal contained abrasive grit[J]. Key Engineering Materials, 2009, 404: 123-130.[4] ZHAO Y W, ZHANG L, YANG ZH. Investigation into normal pressure during electrorheological fluid-assisted polishing[J]. Advanced Materials Research, 2012, 503-504(4): 119-122.[5] LU J B, YAN Q SH, TIAN H, et al.. Polishing properties of tiny grinding wheel based on Fe3O4 electrorheological fluid[J]. Journal of Materials Processing Technology, 2009, 209(11): 4954-4957.[6] LU J B, YAN Q SH, YU J, et al.. Parametric study of micro machining with instantaneous tiny-grinding wheel based on the magnetorheological effect of abrasive slurry[J]. International Journal of Materials & Product Technology, 2008, 31(1): 113-124.[7] 魏宸官. 电流变技术-机理材料工程应用 [M]. 北京: 北京理工大学出版社, 2000. WEI CH G. Electrorheological Technology-Theroy Material Engineering Applications[M]. Beijing: Beijing Institute of Technology Press, 2000. (in Chinese)[8] KOYAMA K, MINAGAWA K, WATANABE T, et al.. Electro-magneto-rheological effects in parallel-field and crossed-field systems[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 58(2-3): 195-206.[9] TIAN H, YAN Q SH, LU J B, et al.. Foundational study on micro machining with instantaneous tiny-grinding wheel based on electro-magneto-rheological effect. In: SPIE'2007 Proc 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies, Chengdu, China, July 08-12, 2007, 6724: 7240-7248.[10] LIU Y, YAN Q SH, LU J B, et al.. Micro machining of three-dimensional microstructure with the tiny-grinding wheel based on the electro-magneto-rheological effect[J]. Key Engineering Materials, 2009, 407-408: 363-367.[11] LIU Y, YAN Q SH, LU J B, et al.. Effect of tool cone angle on micro machining based on the EMR effect[J]. Key Engineering Materials, 2010, 447-448: 198-202.[12] LU J B, YAN Q SH, TIAN H, et al.. Effect of abrasive on the machining performance of the EMR-effect-based tiny-grinding wheel[J]. Advanced Materials Research, 2010, 135: 24-29.[13] 路家斌,阎秋生,田虹,等. 电磁流变效应微磨头抛光加工电磁协同作用机理[J]. 摩擦学学报, 2010, 30(2): 190-196. LU J B, YAN Q SH, TIAN H, et al.. Synergistic effect of electro-magnetically coupled field in polishing with the EMR effect-based tiny-grinding wheel[J]. Mocaxue Xuebao/Tribology, 2010, 30(2): 190-196. (in Chinese)[14] ZHANG F H, YU X B, ZHANG Y. Analysis of tangential position error or removal function error in ultrasonic-magnetorheological combined finishing[J]. Key Engineering Materials, 2012, 516: 390-395.[15] YIN SH H, SHINMURA T. A comparative study: polishing characteristics and its mechanisms of three vibration modes in vibration-assisted magnetic abrasive polishing[J]. International Journal of Machine Tools & Manufacture, 2004, 44(4): 383-390.
0
浏览量
436
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构