浏览全部资源
扫码关注微信
1. 北京工业大学 电子信息与控制工程学院,北京 100124
2. 河北工业职业技术学院 信息工程与自动化系,河北 石家庄 050000
收稿日期:2012-06-21,
修回日期:2012-08-30,
纸质出版日期:2012-11-10
移动端阅览
贾松敏, 王丽佳, 王爽, 李秀智. 改进的步态光流图与视角相结合的身份识别[J]. 光学精密工程, 2012,20(11): 2500-2506
JIA Song-min, WANG Li-jia, WANG Shuang, LI Xiu-zhi. Personal identification combining modified gait flow image and view[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2500-2506
贾松敏, 王丽佳, 王爽, 李秀智. 改进的步态光流图与视角相结合的身份识别[J]. 光学精密工程, 2012,20(11): 2500-2506 DOI: 10.3788/OPE.20122011.2500.
JIA Song-min, WANG Li-jia, WANG Shuang, LI Xiu-zhi. Personal identification combining modified gait flow image and view[J]. Editorial Office of Optics and Precision Engineering, 2012,20(11): 2500-2506 DOI: 10.3788/OPE.20122011.2500.
提出将改进的步态光流图(LK-GFI)与视角相结合的方法来解决步态识别易受视角影响的问题。该方法采用Lacus-Kanade (LK)光流法获得连续两帧侧影图像间的光流场
并构造步态特征图像LK-GFI
利用成像原理计算人的行走方向以确定视角。首先
离线建立目标在各视角下的LK-GFI数据库;然后
提取待识别人的当前视角和LK-GFI;最后
用欧式距离度量同一视角下待识别人与目标的LK-GFI之间的相似性。分别采用CASIA数据库和实际室内获得的步态序列对该方法进行了验证。结果显示
错误拒绝率分别为7.95%和9.12%
与采用传统的步态能量图(GEI)相比分别降低了12.5%和14.45%;与采用步态光流图(GFI)相比分别降低了7.77%和6.74%。该方法识别准确性高
实时性强
对多视角有较强的鲁棒性。
A method combined the modified Lucas-Kanade Gait Flow Image (LK-GFI) with the view was proposed to solve the problem that personal identification based on a gait is sensitive to view change. The Lacus-Kanade optical method was used to compute the optical flow between two silhouettes to construct LK-GFI
and the view was obtained according to the walking direction of the person. The LK-GFI database for the target at different views was established
then the new person's view and LK-GFI were extracted. At last
the similarity between the new person's LK-GFI and the target's LK-GFI at the same view was computed by the Euclidian distance method. The performance of this method was evaluated on the data in the CASIA database and the data obtained in indoor lab environment
and the False Rejection Rate (FRR) is 7.95% and 9.12% respectively. It is reduced by 12.5% and 14.45% respectively compared with that of the Gait Energy Image (GEI)
and by 7.77% and 6.74% respectively compared with that of the Gait Flow Image (GFI). The proposed method has high recognition accuracy
strong real-time and the robustness to view changes.
周志宇,杨卫成,汪亚明,等. 应用梯度矢量流Snake和灰预测的人脸轮廓跟踪[J]. 光学 精密工程,2011,19(11):2744-2752. ZHOU ZH Y, YANG W CH, WANG Y M, et al.. Realization of face contour tracking by GVF Snake and grey prediction[J]. Opt. Precision Eng., 2011, 19(11): 2744-2752. (in Chinese)[2] 胡荣,王宏远. 对步态空时数据的连续特征子空间分析[J]. 中国图象图形学报,2011,16(4):625-633. HU R, WANG H Y. Recursive spatiotemporal subspace learning for gait recognition [J]. Journal of Image and Graphics, 2011, 16(4): 625-633. (in Chinese)[3] CHENG M H, HO M F, HUANG CH L. Gait analysis for human identification through manifold learning and HMM [J]. Pattern Recognition, 2008, 41(8): 2541-2553.[4] 王亮,胡卫明,谭铁牛. 基于步态的身份识别[J]. 计算机学报,2003,26(3):1-9. WANG L, HU W M, TAN T N. Gait-based human identification [J]. Journal of Computers, 2003, 26(3): 1-9.(in Chinese)[5] 王利巧,裴亚南. 基于步态能量图和不变矩的身份识别算法[J]. 计算机与数字工程,2009,37(10):128-131. WANG L Q,PEI Y N. Human recognition based on gait energy image and invariant moments [J]. Computer & Digital Engineering, 2009, 37(10): 128-131.(in Chinese)[6] 赵黎丽,侯正信. 步态识别问题的特点及研究现状[J]. 中国图象图形学报,2006,11(2):151-161. ZHAO L L, HOU ZH X. Characteristics of gait recognition problem and a review of its research [J]. Journal of Image and Graphics, 2006, 11(2): 151-161. (in Chinese)[7] JU H, BHANU B. Individual recognition using gait energy image [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2): 316-322.[8] LAM T H W, LEE R S T, ZHANG D. Human gait recognition by the fusion of motion and static spatio-temporal templates [J]. Pattern Recognition, 2007, 40(9): 2563-2573.[9] LAM T H W, CHEUNG K H, LIU J N K. Gait flow image: silhouette-based gait representation for human identification [J]. Pattern Recognition, 2011, 44(4): 973-987.[10] HUANG X X, BOULGOURIS N V. Human gait recognition based on multiview gait sequences [J]. EURASIP Journal on Advances in Signal Processing, 2008: 1-9.[11] KUSAKUNNIRAN W, WU Q, LI H D, et al.. Multiple views gait recognition using view transformation model based on optimized gait energy image. IEEE 12th International Conference on Computer Vision Workshops, Tyoto, P.R. Japan: ICCVW, 2009:1058-1064.[12] HAN X, LIU J W, LI L, et al.. Gait recognition considering directions of walking. IEEE Conference on Cybernetics and Intelligent Systems, Bangkok, P.R. Thailand: CIS, 2006:1-5.[13] 屠大维,江济良. 改进的光流运动图像分析方法及其应用[J]. 光学 精密工程,2011,19(5):1159-1164. TU D W, JIANG J L. Improved algorithm for motion image analysis based on optical flow and its application[J]. Opt. Precision Eng., 2011, 19(5): 1159-1164. (in Chinese)[14] 曲兴华,宫辉,贾果欣. 数码相机的彩色图像预处理过程[J]. 光学 精密工程, 2009, 17(1):207-212. QU X H, GONG H, JIA G X. Preprocessing of color image based on digital camera [J]. Opt. Precision Eng., 2009, 17(1): 207-212. (in Chinese)
0
浏览量
347
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构