浏览全部资源
扫码关注微信
1. 闽江学院 物理学与电子信息工程系,福建 福州,350108
2. 福建师范大学 光电与信息工程学院,福建 福州,350007
收稿日期:2012-10-19,
修回日期:2012-11-02,
纸质出版日期:2012-12-10
移动端阅览
陈胜钰, 庄冬霞, 强则煊, 陈曦曜. 基于自准直效应的硅基光子晶体1×4光复用器[J]. 光学精密工程, 2012,20(12): 2626-2632
CHEN Sheng-yu, ZHUANG Dong-xia, QIANG Ze-xuan, CHEN Xi-yao. 1×4 optical multiplexer based on self-collimation effect in silicon photonic crystals[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2626-2632
陈胜钰, 庄冬霞, 强则煊, 陈曦曜. 基于自准直效应的硅基光子晶体1×4光复用器[J]. 光学精密工程, 2012,20(12): 2626-2632 DOI: 10.3788/OPE.20122012.2626.
CHEN Sheng-yu, ZHUANG Dong-xia, QIANG Ze-xuan, CHEN Xi-yao. 1×4 optical multiplexer based on self-collimation effect in silicon photonic crystals[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2626-2632 DOI: 10.3788/OPE.20122012.2626.
利用光子晶体的自准直效应进行光束的控制
实现了基于自准直效应的二维光子晶体14光复用器(OMUX)。在结构中放置两个腔长不同的马赫-曾德干涉仪
利用光束干涉原理推导出光复用器各个出口的透射谱理论公式
然后利用时域有限差分软件对其进行数值模拟。结果显示:模拟结果与理论分析一致
实现了14光复用器的功能。当工作波长为1 550 nm时
OMUX的自由光谱区为34.1 nm
覆盖了整个光通信C波段。由于结构大小只有40~35 m
并且有较高的输出功率
该光复用器在光集成电路中有潜在的应用价值。
An 14 Optical Multiplexer (OMUX) based on the self-collimation effect of a two-dimensional photonic crystal was proposed and its performance was numerically demonstrated. Two Mach-Zehnder Interferometers(MZIs) with different cavity lengths were placed in the structure. Firstly
the theoretical transmission spectra at different output ports of the cascaded MZI were analyzed with the theory of light interference
then they were investigated with the Finite-difference Time-domain (FDTD) simulation technique. The simulation results agree well with the theoretical prediction
so the cascaded Mach-Zehnder interferometer can work as a 14 optical multiplexer. When the wavelength is 1 550 nm
the free spectral range of the OMUX is about 34.1 nm
which almost covers the whole optical communication C-band window. The presented device shows a compact size within 40-35 m and a high output efficiency
and has potential application values to photonic integrated circuits.
KOSAKA H. Self-collimating phenomena in photonic crystals [J]. Appl. Phys. Lett.,1999, 74(9):1212.[2] PRATHER D W, SHI S, MURAKOWSKI J, et al.. Self-collimation in photonic crystal structures: a new paradigm for applications and device development [J]. Journal of Physics D: Applied Physics, 2007, 40(9):2635-2651.[3] YU X. Bends and splitters for self-collimated beams in photonic crystals [J]. Appl. Phys. Lett., 2003, 83(16):3251.[4] ZHAO D Y. Photonic crystal Mach-Zehnder interferometer based on self-collimation [J]. Appl. Phys. Lett., 2007, 90(23):231114.[5] ZABELIN V, DUNBAR L, LE T N, et al.. Self-collimating photonic crystal polarization beam splitter [J]. Opt. Lett., 2007, 32(5):530-532.[6] CHEN X Y, QIANG Z X, ZHAO D Y, et al.. Polarization-independent drop filters based on photonic crystal self-collimation ring resonators [J]. Opt. Express, 2009, 17(22):19808-19813.[7] KIM S H, KIM T T, OH S, et al.. Experimental demonstration of self-collimation of spoof surface plasmons [J]. Physical Review B, 2011, 83(16):165109.[8] PAKICH P T, DAHLEM M S, TANDON S, et al.. Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal [J]. Nature Materials, 2006, 5(2):93-6.[9] LU Z, SHI S, MURAKOWSKI J A, et al.. Experimental demonstration of self-collimation inside a three-dimensional photonic crystal [J]. Physical Review Letters, 2006, 96(17):173902.[10] CHIGRIN D, ENOCH S, SOTOMAYOR T C, et al.. Self-guiding in two-dimensional photonic crystals [J]. Opt. Express, 2003, 11(10):1203-1211.[11] LI Z, CHEN H, SONG Z, et al.. Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals [J]. Applied Physics Letters, 2004, 85(21):4834-4836.[12] CHEN X Y, ZHAO D Y, QIANG Z X, et al.. Polarization-independent Fabry-Perot interferometer in a hole-type silicon photonic crystal [J]. Appl. Opt., 2010, 49(30):5878-5881.[13] KIM T T, LEE S G, KIM S H, et al.. Ring-type Fabry-Prot filter based on the self-collimation effect in a 2D photonic crystal [J]. Opt. Express, 2010, 18(16):17106-17113.[14] WANG Y F. Transmission spectrum of Fabry-Perot interferometer based on photonic crystal [J]. SPIE, 2007, 6838(1):683804.[15] CHEN X Y, QIANG Z X, ZHAO D Y, et al.. Polarization beam splitter based on photonic crystal self-collimation Mach-Zehnder interferometer [J]. Optics Communications, 2011, 284(1):490-493.[16] CHEN X Y, LI H, QIU Y S, et al..Tunable photonic crystal Mach-Zehnder interferometer based on self-collimation [J]. Chinese Physics Letters, 2008, 25(12):4307-4310.[17] KIM T T, LEE S G, PARK HY, et al.. Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals [J]. Opt. Express, 2010, 18(6):5384-5389.[18] E CENTENO BG,FELBACQ D. Multiplexing and demultiplexing with photonic crystals [J]. Journal of Optics A: Pure and Applied Optics,1999, 1(5):L10-L13.[19] KIM S, PARK I, LIM H, et al.. Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback [J]. Opt. Express, 2004, 12(22):5518-5525.[20] KOSHIBA M. Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers [J]. J. Lightwave Technol., 2001, 19(12):1970. [21] FAN S H, ZHANG D Z. Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration [J]. IEEE Journal of Quantum Electronics, 2003, 39(1):160-165.[22] SHARKAWY A, SHI S, PRATHER DW. Multichannel wavelength division multiplexing with photonic crystals [J]. Appl. Opt., 2001, 40(14):2247-2252.
0
浏览量
438
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构