浏览全部资源
扫码关注微信
1. 华南理工大学 机械与汽车工程学院,广东 广州 510640
2. 江西理工大学 机电工程学院,江西 赣州 341000
收稿日期:2012-10-05,
修回日期:2012-11-23,
纸质出版日期:2012-12-10
移动端阅览
胡俊峰, 张宪民. 3自由度精密定位平台的运动特性和优化设计[J]. 光学精密工程, 2012,20(12): 2686-2695
HU Jun-feng, ZHANG Xian-min. Kinematical properties and optimal design of 3-DOF precision positioning stage[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2686-2695
胡俊峰, 张宪民. 3自由度精密定位平台的运动特性和优化设计[J]. 光学精密工程, 2012,20(12): 2686-2695 DOI: 10.3788/OPE.20122012.2686.
HU Jun-feng, ZHANG Xian-min. Kinematical properties and optimal design of 3-DOF precision positioning stage[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2686-2695 DOI: 10.3788/OPE.20122012.2686.
为了实现3-RRR柔顺并联精密定位平台的精确运动
研究了它的封闭形式精确运动模型和尺寸优化设计。采用卡氏第二定理建立精密定位平台的封闭式柔度模型。根据柔顺并联机构的结构特点
将其划分为3个对称分布的运动支链
并结合铰链的柔度模型和机构力传递关系分别推导出各个支链的刚度模型
整个系统的刚度为所有支链在同一坐标系下的刚度的叠加。建立的刚度模型是以柔性铰链的柔度为变量的封闭形式模型。根据柔度矩阵可得到反映输入位移和输出位移之间关系的雅可比矩阵。理论模型与有限元分析的比较结果显示
两者所得的运动模型误差为1.0%~9.5%
证明了所推导运动模型的正确性和精确性。根据雅可比矩阵的封闭公式
分析其对结构参数的灵敏度
并由此选出对平台运动特性影响较大的优化设计变量。提出以最大化平台工作空间为目标
以铰链强度、最大输入力、几何尺寸和输入耦合为约束的优化模型。结果表明
优化后的结构参数能获得更大的输出位移
说明该方案能满足优化设计要求。
To achieve the precise motion of a 3-RRR compliant parallel precision positioning stage
a closed-form exact motion model was established and the optimized design of structure parameters was investigated. The Castigliano's second theorem was applied to establishment of the closed-form compliance model for the precision positioning stage. According to the structural characteristics of compliant parallel mechanisms
the system was divided into three symmetrical motion sub-chains. Combining the compliance equations of flexure hinge with the force transmission relations of mechanisms
the stiffness model of each sub-chain was obtained
and the stiffness of the entire system was calculated by summing the stiffness of three sub-chains in the same coordinate system. The proposed stiffness model took the hinge flexibility as the independent variables in the closed form. According to the flexibility matrix
the Jacobian matrix to reflect the relationship between input displacement and output one could be derived. By comparing the kineamatic model between theoretical analysis and FEA
the results show that the errors are within 1.0%~9.5%
which illurastrates that the proposed kinematic model is correct and precise. According to the closed-form Jacobian matrix
its sensitivity to structureal parameters was analyzed
then the design variables with greater impact on the kinematic properties were chosen. By taking the maxmium workspace as a target and the hinge strength
maxmium input forces
geometric dimensions and input coupling as the constrains
an optimal model was proposed. The results show that the optimized structural parameters can obtain more output displacements
and the proposed model can meet the design requirement.
于靖军, 宗光华, 毕树生. 全柔性机构与MEMS [J]. 光学精密工程, 2001,9(1): 1-5. YU J J, ZONG G H, BI SH SH. Fully compliant mechanisms and MEMS [J]. Opt. Precision Eng., 2001,9(1): 1-5. (in Chinese)[2] 于靖军, 宗光华, 毕树生. 空间柔性机构位置分析的刚度矩阵法 [J]. 北京航空航天大学学报, 2002,28(3): 323-326. YU J J, ZONG G H, BI SH SH. Stiffness matrix method for displacement analysis of fully spatial compliant mechanisms [J]. Journal of Beijing University of Aeronautics and Astronautics, 2002,28(3): 323-326. (in Chinese)[3] YUE Y, GAO F,ZHAO X CH, et al.. Relationship among input-force, payload, stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator [J]. Mechanism and Machine Theory, 2010, 45:756-771.[4] DON W, SUN L N, DU ZH J. Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints [J]. Precision Engineering, 2008, 32, 222-231.[5] OUYANG P R, TJIPTOPRODJO R C,ZHANG W J, et al.. Micro-motion devices technology: the state of arts review [J]. Int J. Adv. Manuf. Technol., 2008, 38:463-478.[6] TEO T J, CHEN I-Ming, YANG Guilin, et al.. A generic approximation model for analyzing large nonlinear deflection of beam-based flexure joints [J]. Precision Engineering, 2010, 34: 607-618.[7] HOPKINS J B, CULPEPPER M L. A screw theory basis for quantitative and graphical design tools that define layout of actuators to minimize parasitic errors in parallel flexure systems [J]. Precision Engineering, 2010, 34: 767-776. [8] WU T L, CHEN J H, CHANG SH H. A six-DOF prismatic-spherical-spherical parallel compliant nanopositioner [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008,55(12):2544-2551.[9] TIAN Y, SHIRINZADEH B, ZHANG D, et al.. Design and forward kinematics of the compliant micro-manipulator with lever mechanisms [J]. Precision Engineering, 2009, 33:466-476.[10] NICOLAE L, JEFFREY S N P, EDWARD O M, et al.. Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations [J]. Precision Engineering, 2002, 26: 183-192.[11] TIAN Y, IRINZADEH B, ZHANG D, et al.. Design and optimization of an XYZ parallel micromanipulator with flexure hinges [J]. J. Intell. Robot Syst., 2009,55: 377-402.[12] DONG W, SUN L N, DU Z J. Design of a precision compliant parallel positioned driven by dual piezoelectric actuators [J]. Sensors and Actuators A, 2007,135:250-256.[13] YAO Q, DONG J, FERREIRA P M. Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage [J]. International Journal of Machine Tools & Manufacture, 2007, 47: 946-961.[14] CHOI K B, LEE J J, HATA S. A piezo-driven compliant stage with double mechanical amplification mechanisms arranged in parallel [J]. Sensors and Actuators A, 2010, 161: 173-181.[15] KI W C, WOOK B K, YOUNG H J. A transparent polymeric flexure-hinge nanopositioner, actuated by a piezoelectric stack actuator [J]. Nanotechnology, 2011, 22: 250-256.[16] TIAN Y, SHIRINZADEH B, ZHANG D. A flexure-based five-bar mechanism for micro/nano manipulation [J].Sensors and Actuators A, 2009, 153:96-104.[17] HUY H P, CHEN I M. Stiffness modeling of flexure parallel mechanism [J]. Precision Engineering, 2005, 29:467-478.[18] 于靖军, 斐旭, 毕树生,等. 柔性铰链机构设计方法的研究进展 [J]. 机械工程学报,2010,46(13):2-13. YU J J, PEI X, BI SH SH, et al.. State-of-arts of design method for flexure mechanisms [J]. Journal of Mechanical Engineering, 2010,46(13): 2-13. (in Chinese)
0
浏览量
445
下载量
39
CSCD
关联资源
相关文章
相关作者
相关机构