浏览全部资源
扫码关注微信
1. 清华大学 精密仪器与机械学系 北京,100084
2. 清华大学 摩擦学国家重点实验室,北京 100084
收稿日期:2012-09-15,
修回日期:2012-10-19,
纸质出版日期:2012-12-10
移动端阅览
李勇, 李文平, 朱效谷. 柔性MEMS减阻蒙皮设计及其制作工艺[J]. 光学精密工程, 2012,20(12): 2696-2703
LI Yong, LI Wen-ping, ZHU Xiao-gu. Design and fabrication of flexible MEMS anti-drag skin[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2696-2703
李勇, 李文平, 朱效谷. 柔性MEMS减阻蒙皮设计及其制作工艺[J]. 光学精密工程, 2012,20(12): 2696-2703 DOI: 10.3788/OPE.20122012.2696.
LI Yong, LI Wen-ping, ZHU Xiao-gu. Design and fabrication of flexible MEMS anti-drag skin[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2696-2703 DOI: 10.3788/OPE.20122012.2696.
提出了一种电解水式驻留微气泡减阻的柔性微机电系统(MEMS)蒙皮技术
研究了蒙皮结构设计以及加工工艺。设计了一种包含柔性基底层、金属电极图案层和微凹坑阵列层的三层式蒙皮结构
提出了两种基于MEMS工艺的制作方法。分别采用聚二甲基硅氧烷(PDMS)和SU-8胶材料制作了微凹坑阵列层
并对其关键工序进行了实验研究。以SU-8胶为微凹坑阵列材料制作了柔性MEMS蒙皮样件。所制样件中
圆柱形驻气凹坑的直径为40 m、深度为50 m、密度为6.2510
4
/cm
2
、样件总厚度为90 m
可弯曲并贴附于截面直径为28 mm的圆柱体表面而不损坏。结果显示了MEMS减阻蒙皮工艺的可行性
证明将电解水式驻留微气泡的柔性减阻蒙皮设计与MEMS工艺有机结合
是一种航行体表面减阻的有效技术途径。
A novel flexible Microelectromechanical System(MEMS) anti-drag skin was proposed based on the drag reduction with lingering-micro-bubble generated by electrolysis
and the fabrication of flexible MEMS anti-drag skin was designed. The MEMS skin composed of a flexible substrate layer
a metal electrode layer and a micro-well-array layer was designed
and two process routes based on MEMS were developed for the skin fabrication.Then
the polydimethylsiloxane(PDMS) and SU-8 were used to fabricate the micro-well-array layer
respectively. Several key steps in these processes were studied and a specimen was fabricated using SU-8. The specimen has a thickness of 90 m and contains 6.2510
4
cylindrical wells with a depth of 50 m and a diameter of 40 m per square centimeter. It can be bent and attached on a 28 mm cylinder without damage. Results demonstrate that the MEMS is feasible to realize the anti-drag skin and the flexible MEMS anti-drag skin offers a novel way to reduce the skin friction of vehicles in water.
董文才,郭日修. 气幕减阻研究进展[J]. 船舶力学,1998,2(5): 73-78. DONG W C, GUO R X. Research progress of air injection drag reduction [J]. Academy of Naval Engineering, 1998,2(5):73-78. (in Chinese)[2] DUNISCHEV Y N, EVSEEV A R, SOBOLEV V S, et al.. Study of gas-saturated turbulent streams using a laser Doppler velocity meter [J]. Journal of Applied Mechanics and Technical Physics, 1975, 16(1):114-119.[3] MADAVAN N K, DEUTSCH S, MERKLE C L. Reduction of turbulent skin friction by micro bubbles [J]. The Physics of Fluids,1984, 27(2):356-363.[4] 董文才,郭日修,陈小玲,等. 滑行艇气层减阻试验[J]. 中国造船,2002,43(4):13-18. DONG W C, GUO R X, CHEN X L, et al.. Experimental study on resistance reduction of planning craft by air injection [J]. Ship Building of China, 2002, 43(4):13-18. (in Chinese)[5] 陈旭鹏,李勇,朱效谷,等. 柔性MEMS减阻蒙皮及其制造方法:中国,ZL200910079713.0.2009-7-22. CHEN X P,LI Y,ZHU X G,et al.. Flexible MEMS anti-dray skin and its fabrication:China,ZL2200910079713.0.2009-7-22.[6] STEPHANI K A, GOLDSTEIN D B. An examination of trapped bubbles for viscous drag reduction on submerged surfaces [J]. Journal of Fluids Engineering, Transactions of the ASME, 2010, 132(4): 041303-1-9.[7] BARTH P W, BERNARD S L, ANGELL J B. Flexible circuit and sensor arrays fabricated by monolithic silicon technology [J]. IEEE Trans. Electron Devices, 1985, 32(7):1202-1205.[8] JIANG F K, LEE G B, TAI Y C, et al.. A flexible micro machine-based shear-stress sensor array and its application to separation-point detection [J]. Sensors and Actuators: A-Physical, 2003, 79(3):194-203.[9] 芮岳峰,王亚军,刘景全,等. 基于Parylene的柔性生物微电极阵列的制作[J]. 纳米技术与精密工程,2011,9(5): 422-426. RUI Y F, WANG Y J, LIU J Q, et al.. Fabrication of parylene-based flexible microelectrode arrays [J]. Nanotechnology and Precision Engineering, 2011,9(5):422-426. (in Chinese)[10] KIM E, XIA Y N, WHITESHIDES G M. Polymer microstructures formed by moulding in capillaries [J]. Nature, 1995, 118: 5722-5731.[11] KIM E, XIA Y N, WHITESHIDES G M. Micromolding in capillaries: applications in materials science [J]. Journal of the American Chemical Society, 1996, 118 (24): 5722-5731.[12] XIA Y N, KIM E, WHITESIDES G M. Micromolding of polymers in capillaries: applications in microfabrication [J]. Chemistry of Materials, 1996, 8(7): 1558-1567.[13] BALAKRISNAN B, PATIL S, SMELA E. Patterning PDMS using a combination of wet and dry etching [J]. Journal of Micromechanics and Microengineering,2009, 19:047002-1-7.[14] GARRA J, LONG T, CURRIE J, et al.. Dry etching of polydimethylsiloxane for microfluidic systems [J]. American Vacuum Society, 2002, 20(3): 975-982.[15] BOGDANOV A L, PEREDKOV S S. Use of SU-8 photoresist for very high aspect ratio x-ray lithography [J]. Journal of Micromechanics and Microengineering, 2007,17(6):81-95.[16] LORENZ H, DESPONT M, FAHRNI N, et al.. High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS [J]. Sensors and Actuators,1998,64(1):33-39.[17] 黄新龙,熊瑛,陈光焱,等. UV-LIGA技术制作微型螺旋形加速开关[J]. 光学精密工程,2010, 18(5):1152-1158. HUANG X L, XIONG Y, CHEN G Y, et al.. Fabrication of micro spiral acceleration switch using UV-LIGA technology [J]. Opt. Precision Eng., 2010, 18(5):1152-1158. (in Chinese)[18] 褚金奎,陈兆鹏,张然. 集成铜金属压阻层的SU-8胶悬臂梁微力传感器的制作[J]. 光学精密工程, 2011, 19(12): 2935-2940. CHU J K, CHEN ZH P, ZHANG R. Microfabrication of SU-8 cantilever micro-force sensor integrated by copper piezoresistance [J]. Opt. Precision Eng., 2011,19(12):2935-2940. (in Chinese)
0
浏览量
892
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构