浏览全部资源
扫码关注微信
1. 河北工业大学 信息工程学院 天津,300401
2. 河北工业大学-Xilinx信号检测与处理联合实验室 天津,300401
收稿日期:2012-07-19,
修回日期:2012-10-12,
纸质出版日期:2012-12-10
移动端阅览
王蒙军, 阳路, 王霞, 刘剑飞. 用简化脉冲耦合神经网络实现交通标志图像的类Euclidean距离变换类内特征提取[J]. 光学精密工程, 2012,20(12): 2751-2758
WANG Meng-jun, YANG Lu, WANG Xia, LIU Jian-fei. Realization of within-class feature extracting based on Euclidean-like distance transform for traffic signs using simplied PCNN[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2751-2758
王蒙军, 阳路, 王霞, 刘剑飞. 用简化脉冲耦合神经网络实现交通标志图像的类Euclidean距离变换类内特征提取[J]. 光学精密工程, 2012,20(12): 2751-2758 DOI: 10.3788/OPE.20122012.2751.
WANG Meng-jun, YANG Lu, WANG Xia, LIU Jian-fei. Realization of within-class feature extracting based on Euclidean-like distance transform for traffic signs using simplied PCNN[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2751-2758 DOI: 10.3788/OPE.20122012.2751.
脉冲耦合神经网络(PCNN)提取的特征序列的旋转不变性降低了道路交通标志类内匹配识别的准确性
为了提取更有利于形状分类的特征向量
本文利用PCNN的自动波扩散特性
简化了PCNN模型。采用简化PCNN模型产生的类Euclidean距离图像作为分类特征
利用最小方差值进行匹配分析
并通过实验选取了最佳PCNN参数。针对道路交通标志图像库GB5768-1999的实验结果表明
采用获得的类Euclidean距离图像作为特征向量进行分类匹配
在选定边缘图像的迭代次数
N
为16
反馈输入固有电势
V
F
为0.65
动态门限固有电势
V
T
为100
卷积核矩阵为55时
最小方差值均出现在对应的标准图像位置。结果表明
简化PCNN的类Euclidean距离变换能够有效提取二值边缘图像的形状信息。 该方法优于传统PCNN熵序列的特征向量方法
类内区分效果更加明显。
The recognition accuracy of with-in class matching traffic signs is dropped because of the rotation invariance in feature sequences extracted by conventional Pulse Coupled Neural Network(PCNN). In order to get a new feature vector with stronger classification ability
the PCNN mode was simplified according to its automatic wave diffusion characteristics. An Euclidean-like distance image was used as the new feature vector
and a match analysis was carried out by the minimum variance. Then
optimal parameters of PCNN were acquired through experiments. The experimental results based on GB5768-1999 traffic signs show that when the Euclidean-like distance transform based on simplified PCNN is used as the feature vector for classification matching
the variance of test image corresponding to standard images can achieve the minimum value in acquiring edge image with the number iterations of 16
magnitude adjustments of feeding input of 0.65
magnitude adjustments of dynamic threshold of 100
and convolution kernel matrix in 5 5. It concludes that the Euclidean-like distance transform based on simplified PCNN can expand the shape information of edge images effectively. It is superior to the feature vector based on entropy sequence
and is fit for the identification of target images in with-in classes.
XU Q S, SU J, LIU T T. A detection and recognition method for prohibition traffic signs. Proceedings of IEEE International Conference on Image Analysis and Signal Processing, Xiamen, P.R. China: ICIASP, 2010: 583-586.[2] WANG Y P, SHI M P, WU T. A method of fast and robust for traffic sign recognition. Proceedings of 5th International Conference on Image and Graphics, Xi'an, P.R. China: ICIG, 2009:891-895.[3] GU Y L, YENDO T, TEHRANI M P, et al.. A new vision system for traffic sign recognition. Proceedings of IEEE Intelligent Vehicles Symposium, San Diego, CA: IVS, 2010: 7-12.[4] 陈洪波,王强,徐晓蓉,等. 用改进的Hough变换检测交通标志图像的直线特征[J]. 光学精密工程,2009,17(5):1111-1118. CHEN H B, WANG Q, XU X R, et.al.. Line detection in traffic sign image based on improved Hough transforms [J]. Opt. Precision Eng., 2009,17(5):1111-1118. (in Chinese)[5] TANG J, LIANG X, CHENG F Y, et al.. A method for traffic signs detection, tracking and recognition. Proceedings of 5th International Conference on Computer Science and Education, Changsha, P. R. China: ICCSE, 2010:189-194.[6] JOSHI M, GINGH M J, DALELA S. Automatic colored traffic sign detection using optoelectronic correlation architectures. Proceedings of IEEE International Conference on Vehicular Electronics and Safety, Columbus, OH: ICVES, 2008: 75-78. [7] ANDREY V, JO K H. Automatic detection and recognition of traffic signs using geometric structure analysis. Proceedings of International Joint Conference on SICE-ICASE, Busan, Korea:ICSCIE-ICASE, 2006:1451-1456.[8] RUGHOOPUTH S D D V, BUOOTUN H, RUGHOOPUTH H C S. Pulse coded neural networks for sign recognition for navigation. Proceedings of IEEE International Conference on Industrial Technology, Maribor, Slovenia:ICIT, 2003,1:89-94.[9] WANG ZH H, TIE Y, LIU Y P. Design and implementation of image fusion system. Proceedings of International Conference on Computer Application and System Modeling, Taiyuan, P.R. China: ICCASE, 2010,1:140-143.[10] 武治国,王延杰,李桂菊. 应用小波变换的自适应脉冲耦合神经网络在图像融合中的应用[J]. 光学精密工程,2010,18(3): 708-715. WU ZH G, WANG Y J, LI G J. Application of adaptive PCNN based on wavelet transform to image fusion [J]. Opt. Precision Eng., 2010, 18(3):708-715. (in Chinese)[11] WANG ZH B, MA Y D, CHENG F Y, et al.. Review of pulse-coupled neural networks [J]. Image and Vision Computing, 2010, 28 (10): 5-13.[12] 刘相滨,邹北骥,孙家广. 基于边界跟踪的快速欧氏距离变换算法[J]. 计算机学报,2006,29(2): 317-323. LIU X B, ZOU B J, SUN J G. Fast euclidean distance transform based on contour tracking [J]. Chinese Journal of Computers, 2006,29(2):317-323. (in Chinese)[13] 陆宗骐,朱煜. 用带形状校正的腐蚀膨胀实现Euclidean距离变换[J]. 中国图像图形学报,2010,15(2):294-300. LU Z Q, ZHU Y. Implementation of Euclidean distance transform using erosion and dilation with form correction [J]. Journal of Image and Graphics, 2010, 15(2):294-300. (in Chinese)
0
浏览量
269
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构