浏览全部资源
扫码关注微信
1. 福州大学 物理与信息工程学院,福建 福州 350000
2. 瑞典皇家工学院,斯德哥尔摩,瑞典
收稿日期:2012-07-17,
修回日期:2012-08-30,
纸质出版日期:2012-12-10
移动端阅览
王卫星, 苏培垠. 基于颜色、梯度矢量流活动轮廓及支持向量机实现白细胞的提取和分类[J]. 光学精密工程, 2012,20(12): 2781-2790
WANG Wei-xing, SU Pei-yin. Blood cell image segmentation on color and GVF Snake for Leukocyte classification on SVM[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2781-2790
王卫星, 苏培垠. 基于颜色、梯度矢量流活动轮廓及支持向量机实现白细胞的提取和分类[J]. 光学精密工程, 2012,20(12): 2781-2790 DOI: 10.3788/OPE.20122012.2781.
WANG Wei-xing, SU Pei-yin. Blood cell image segmentation on color and GVF Snake for Leukocyte classification on SVM[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2781-2790 DOI: 10.3788/OPE.20122012.2781.
提出了一种基于图像技术实现白细胞分类的方法。首先
利用彩色图像的信息转换、距离变换和梯度矢量流活动轮廓(GVF Snake)等方法从血液细胞图像中提取出白细胞;然后
利用细胞核在图像中具有较高颜色饱和度的特点
结合数学形态学和GVF Snake方法从白细胞中精确地提取出细胞核。最后
根据细胞的形态、颜色及纹理特征用支持向量机(SVM)对白细胞进行分类。实验结果表明:在上述图像分割的基础上
基于支持向量机分类器的方法对白细胞进行分类
分类准确度能够达到89.6%。与其他传统的分割和分类的方法相比
本文提出的方法具有一定的优越性。
A leukocyte classification method was proposed by using image technologies.Firstly
based on image color information
image distance transformation and the Snake of Gradient Vector Flow (GVF Snake)
the leukocytes were extracted in a blood cell image
and then the high saturation trait of the leukocyte nuclei was combined the morphological mathematics and GVF Snake to detect the nuclei in the leukocyte image. According to the features of morphometry
color and texture for cells
the Support Vector Machines (SVMs) were taken to classify the leukocytes. The results show that the proposed image segmentation method and the classifier to classify the leukocytes can achieve the accuracy by 89.6%. Compared to other traditional cell image segmentation and analysis methods
the proposed method is satisfactory.
曾明,孟庆浩,张建勋,等. 基于形态特征和 SVM的血细胞核自动分析[J]. 计算机工程, 2008, 34(2):14-19. ZENG M, MENG Q H, ZHANG J X, et al.. Automatic analysis system of blood nuclei based on morphological features and support vector machines [J]. Computer Engineering, 2008, 34(2):14-19. (in Chinese)[2] HERBERT R, VINCENT L, HORST B,et al..Leukocyte segmentation and classification in blood smear images. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. China, IEEE, 2005:3371-3374.[3] MADHUMALA G, DEVKUMAR D, SUBHODIP M, et al.. Statistical pattern analysis of white blood cell nuclei morphometry. Proceedings of the 2010 IEEE Students' Technology Symposium. India,2010:51-66.[4] XIE E,MCGINNITY T,WU Q X. Automatic extraction of shape features for classification of leukocyte. 2010 International Conference on Artificial Intelligence and Computational Intelligence, China, 2010:220-224.[5] 印勇,王云,刘丹平. 血细胞图像分割的改MEANSHIFH方法[J]. 计算机工程与应用, 2010, 46(6):178-180. YING Y, WANG Y, LIU D P. Improved MEANSHIFT method for blood cell image segmetation [J]. Computer Engineering and Applications, 2010, 46(6):178-180. (in Chinese)[6] SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging, 2004, 13(1):146-165.[7] RAFAEL C G,RICHARD E W. Digital Image Processing[M]. 2nd ed. BeiJing: Publishing House of Electronics Industry, 2009.(in Chinese)[8] 张荣国,刘小君,王蓉,等. 自适应梯度矢量流轮廓提取方法[J]. 模式识别与人工智能, 2008, 21(6):799-805. ZHANG R G, LIU X J,WANG R, et al.. Adaptive gradient vector flow algorithm for boundary extraction [J]. Pattern Recognition and Artificial Intelligence, 2008, 21(6):799-805. (in Chinese)[9] XU C, PRINCE J L. Snakes, shapes and gradient vector flow[J]. IEEE Transactions On Image Processing, 1998, 7(3): 359-369.[10] ARTHORN S,WORANUT I,CHUCHART P, et al.. White blood cell segmentation by distance mapping active contour. 2008 International Symposium on Communications and Information Technologies, Thailand, 2008:251-255.[11] THEERAPATTANAKUL J,POLDPAI J,PINTAVIOOJ C. An efficient method for segmentation step of automated white blood cell classifications. 2004 IEEE Region 10 Conference. China,2004:191-194.[12] 周志宇,杨卫成,汪亚明,等. 应用梯度矢量流 Snake 和灰预测的人脸跟踪[J]. 光学精密工程,2011,19(11):2744-2751. ZHOU Z Y, YANG W C, WANG Y M, et al.. Realization of face contour tracking by GVF Snake and grey prediction[J]. Opt. Precision Eng., 2011,19(11): 2744-2751.(in Chinese)[13] SUBRAJEET M,SUSHANTA S S,DIPTI P, et al.. Fuzzy based blood image segmentation for automated leukemia detection. 2011 International Conference on Devices and Communications, India,2011:1-5.[14] COMANICIU D,MEER P. Mean shift: a robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619. [15] 颜佳,昊敏渊,陈淑珍,等. 跟踪窗口自适应的 Mean Shift 跟踪[J]. 光学精密工程, 2009,17(10): 2606-2611. YAN J,WU M Y,CHEN SH ZH, et al.. Mean shift tracking with adaptive tracking window[J]. Opt. Precision Eng., 2009, 17(10): 2606-2611. (in Chinese)[16] 薛陈,朱明,陈爱华. 鲁棒的基于改进 Mean-shift 的目标跟踪[J]. 光学精密工程, 2010,18(1): 234-239. XUE C, ZHU M, CHEN A H. Robust object tracking based on improved Mean-shift algorithm[J]. Opt. Precision Eng.,2010,18(1):234-239. (in Chinese)[17] CORTES C, VAPNIK V N. Support vector network [J]. Machine Learning, 1995, 20(3): 273-297.[18] 邓乃扬, 田英杰. 支持向量机理论、算法与拓展[M]. 北京:科学出版社, 2009. DENG N Y,TIAN Y J. Support Vector Machines(Theory, Algorithm and Development)[M]. Beijing: Science Press, 2009.(in Chinese)[19] 白鹏,张喜斌,张斌,等.支持向量机理论及工程应用实例[M]. 西安:西安电子科技大学出版社, 2008. BAI P, ZHANG X B, ZHANG B, et al..Support Vector Machine and its Application in Mixed Gas Infrared Spectrum Analysis[M]. XI AN: XiDian University Press,2008.(in Chinese)[20] 高恒振, 万建伟, 粘永健,等. 组合核函数支持向量机高光谱图像融合分类[J]. 光学精密工程, 2011,19(4): 878-883. GAO H Z,WANG J W, NIAN Y J et al.. Fusion classification of hyperspectral image by composite kernels support vector machine[J]. Opt. Precision Eng.,2011,19(4):878-883. (in Chinese)
0
浏览量
312
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构