浏览全部资源
扫码关注微信
南京理工大学 机械工程学院, 江苏 南京 210094
收稿日期:2012-08-30,
修回日期:2012-10-15,
纸质出版日期:2012-12-10
移动端阅览
何博侠, 何勇, 卜雄洙, 商飞. 机器视觉多视场协同测量方法[J]. 光学精密工程, 2012,20(12): 2821-2829
HE Bo-xia, HE Yong, BU Xiong-zhu, SHANG Fei. Cooperative measurement method of multi-FOV for machine vision[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2821-2829
何博侠, 何勇, 卜雄洙, 商飞. 机器视觉多视场协同测量方法[J]. 光学精密工程, 2012,20(12): 2821-2829 DOI: 10.3788/OPE.20122012.2821.
HE Bo-xia, HE Yong, BU Xiong-zhu, SHANG Fei. Cooperative measurement method of multi-FOV for machine vision[J]. Editorial Office of Optics and Precision Engineering, 2012,20(12): 2821-2829 DOI: 10.3788/OPE.20122012.2821.
提出了机器视觉多视场协同测量方法以实现二维几何特征的现场高精度自动测量。介绍了该方法的基本原理
研究了实现多视场协同测量的关键技术。首先
建立测量空间
在大视场图像上识别被测特征并规划测量路径
建立大视场图像坐标与测量空间坐标之间的映射关系;根据测量路径
在测量空间中完成小视场序列图像的自动采集。然后
建立大视场图像坐标与小视场图像坐标之间以及相邻小视场图像坐标之间的映射关系
据此关系
在小视场图像的相应位置搜索并构建精细的辅助测量特征。最后
根据小视场序列图像在测量空间中的方位
求解各局部被测特征参数并进一步求和得到整体被测特征参数。应用该方法对150 mm圆盘上分布的100 mm孔距进行测量实验
结果表明
相对误差的绝对值不超过0.03%。该方法测量精度不受机械坐标精度的影响
适用于在工业现场组建高精度自动测量系统。
A machine vision cooperative measurement method of multiple field of view (Multi-FOV) was proposed to realize the high-precision automatic measurement of two-dimensional geometric features. The basic principle of the method was introduced and the key technologies to realize the cooperative measurement were studied. Firstly
a measuring space was established
the features to be measured were identified
and an optimized measuring path was planed in a large FOV image. Then
the mapping relation between the image coordinate of the large FOV and the measuring space coordinate was established. Guided by the measuring path in the large FOV image and the control system
the sequential images with small FOVs were collected automatically in the measuring space. Furthermore
the mapping relation between the image coordinates of the large FOV and the small FOVs and that between the adjacent small FOV image coordinates were derived. On the basis of these relationships
exact auxiliary measurement characteristics in the corresponding locations in the small FOV images were researched and constructed. Finally
according to the orientations and positions of sequential small FOV images in the measuring space
the partial parameters were calculated and then further add them to get the whole parameters of the measured features. Experimental results indicate that the absolute value of relative error is less than 0.03% when the method was used to gauge the distance of circular holes with the nominal dimension of 100 mm. The outstanding advantage of the cooperative measurement method of multi-FOV is that the measuring accuracy is not influenced by ambient temperature and the coordinate precision of machine. It is an effective method to automatically measure two-dimensional complex geometric characteristics of mechanical parts in industrial fields.
LU H,SUN C R,ZHOU M, et al.. Recent applications of optical and computer-vision methods to research for microelectronics assembly reliability [J]. Optics and Lasers in Engineering, 2010,48(11):1046-1057. [2] MAR N S S,YARLAGADDA P K D V,FOOKES C. Design and development of automatic visual inspection system for PCB manufacturing [J]. Robotics and Computer -Integrated Manufacturing, 2011, 27(5): 949-962.[3] TETI R, JEMIELNIAK K,DONNELL G O, et al.. Advanced monitoring of machining operations [J]. CIRP Annals-Manufacturing Technology, 2010,59(2):717-739. [4] KUO W M, CHUANG S F, NIAN C Y, et al.. Precision nano-alignment system using machine vision with motion controlled by piezoelectric motor [J]. Mechatronics, 2008, 18(1):21-34.[5] 刘庆民,王龙山,陈向伟,等. 齿形链板的图像测量[J]. 光学技术,2005, 31(6):843-845. LIU Q M, WANG L SH, CHENG X W, et al.. Image measurement on the tooth shape chain board [J]. Optical Technique, 2005, 31(6):843-845. (in Chinese)[6] 全燕鸣,黎淑梅. 大型工件测量系统中的快速图像拼接方法[J]. 华南理工大学学报:自然科学版,2011,39(8):60-65. QUAN Y M, LI SH M. Fast image mosaic method for large-scale workpiece measurement system[J]. Journal of South China University of Technology:Natural Science Edition,2011,39(8):60-65. (in Chinese)[7] HE B X,ZHANG ZH SH, DAI M, et al.. A novel method of machine vision measurement based on sequential partial images. Proceedings of the International Conference on Mechanical Engineering and Mechanics, Wuxi, 2007:561-566.[8] RAJESH S,JAMES S, SAMUEL D. Integrating a vision system with a coordinate measuring machine to automate the datum alignment process. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach,2005:655-661.[9] YOON H S, CHUNG S C. Vision inspection of micro-drilling processes on the machine tool [J]. Transactions of the North American Manufacturing Research Institute of SME, 2004, 32:391-398.[10] DUTTA S,DATTA A, DAS C, et al.. Detection of tool condition from the turned surface images using an accurate grey level co-occurrence technique[J]. Precision-Engineering, 2012 36(3): 458-466.[11] SUN T H,TSENG C C,CHEN M S, et al.. Electric contacts inspection using machine vision [J]. Image and Vision Computing, 2010,28(6): 890-901.[12] 于起峰,尚洋.摄像测量学原理与应用研究[M]. 北京:科学出版社,2009. YU Q F, SHANG Y. Videometrics: Principles and Researches[M]. Beijing: Science Press, 2009. (in Chinese)[13] 牛小兵,林玉池,赵美蓉,等. 基于特征的二维图像拼接法测量几何量[J]. 天津大学学报,2001,34(3):396-399. NIU X B, LIN Y CH, ZHAO M R, et al.. Study on 2-D image connection and its application in geometrical parameters measurement [J]. Journal of Tianjin University,2001, 34(3): 396-399. (in Chinese)[14] 何博侠,张志胜,戴敏,等. 基于序列局部图像的高精度测量[J]. 光学精密工程,2008, 16(2):367-373. HE B X, ZHANG ZH SH, DAI M, et al.. A high-precision dimension measurement method based on sequential partial images [J]. Opt. Precision Eng.,2008, 16(2): 367-373. (in Chinese)[15] 张舞杰,杨义禄,李迪,等. 自动影像测量系统关键算法[J]. 光学精密工程,2007,15(2): 294-301. ZHANG W J, YANG Y L, LI D, et al.. Key algorithms of automatic image measurement system [J]. Opt. Precision Eng., 2007 15(2): 294-301. (in Chinese)[16] 叶声华,秦树人. 现代测试计量技术及仪器的发展[J]. 中国测试,2009,35(2):1-6. YE SH H, QIN SH R. Development of modern measuring metrological and instrumental technologies[J]. China Measurement & Test, 2009, 35(2):1-6. (in Chinese)[17] 国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告(2011~2020)[M]. 北京:科学出版社,2010. Department of Engineering and Materials Sciences, National Natural Science Foundation of China. Report of the Development Strategy of Mechanical Engineering Science(2011~2012) [M]. Beijing: Science Press, 2010. (in Chinese)[18] AL-KINDI G A, SHIRINZADEH B. Feasibility assessment of vision-based surface roughness parameters acquisition for different types of machined specimens [J]. Image and Vision Computing, 2009, 27(4):444-458.[19] 周虎,杨建国,李蓓智. 基于互信息测度的平面图像拼接及其测量技术[J]. 东华大学学报:自然科学版,2011,37(6):761-766. ZHOU H, YANG J G, LI P ZH. Image mosaic and measurement technology based on mutual information measure[J]. Journal of Donghua University:Natural Science, 2011, 37(6):761-766. (in Chinese)
0
浏览量
315
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构