浏览全部资源
扫码关注微信
南京理工大学 机械工程学院,江苏 南京,中国,210094
收稿日期:2012-08-24,
修回日期:2012-10-22,
网络出版日期:2013-01-24,
纸质出版日期:2013-01-15
移动端阅览
姜劭栋 裘安萍 施芹 苏岩. 硅微陀螺仪正交耦合系数的计算及验证[J]. 光学精密工程, 2013,21(1): 87-93
JIANG Shao-dong QIU An-ping SHI Qin SU Yan. Calculation and verification of quadrature coupling coefficients of silicon microgyroscope[J]. Editorial Office of Optics and Precision Engineering, 2013,21(1): 87-93
姜劭栋 裘安萍 施芹 苏岩. 硅微陀螺仪正交耦合系数的计算及验证[J]. 光学精密工程, 2013,21(1): 87-93 DOI: 10.3788/OPE.20132101.0087.
JIANG Shao-dong QIU An-ping SHI Qin SU Yan. Calculation and verification of quadrature coupling coefficients of silicon microgyroscope[J]. Editorial Office of Optics and Precision Engineering, 2013,21(1): 87-93 DOI: 10.3788/OPE.20132101.0087.
硅微陀螺仪多采用微机械加工工艺制作,其加工的相对精度较低,从而易产生正交耦合误差,影响陀螺仪的输出。为了优化设计硅微陀螺仪结构,提高其性能,本文建立了陀螺仪正交耦合系数的理论分析模型。首先,利用能量方法推导陀螺仪驱动梁的面内刚度;然后,建立陀螺仪的刚度矩阵;最后,推导了正交耦合系数的理论计算公式。针对本课题组研制的双质量振动式硅微陀螺仪,理论计算出其直接耦合系数为4.7410
-5
,二次耦合系数为8.4410
-7
。得到的陀螺仪的正交耦合系数为4.7510
-5
,与仿真值相差8.7%。分析得到陀螺仪正交耦合系数的最大值为2.1810
-4
,与仿真值相差7.9%。最后,实验验证了计算结果的正确性。得到的结果表明,建立的正交耦合系数理论分析模型可为硅微陀螺仪的结构优化设计提供理论依据和实际指导。
Silicon microgroscope is processed usually by microfabrication technology. It could lead to a quadrature coupling error and influence the output of the silicon microgyroscope for the lower relative accuracy from the fabrication processing. To optimize the structure of the silicon microgyroscope and enhance its performance
a theoretical model of quadrature coupling coefficients for the microgyroscope was established. Firstly
energy theorem was used to infer the in-plane stiffness of driving beam to set up the stiffness matrix of the microgyroscope. Then
the theoretical analysis model of quadrature coupling coefficients was established. According to a dual-mass vibrating silicon microgyroscope developed by our research group
the theoretical calculation shows that the direct coupling coefficient and the second-order coupling coefficient are 4.7410
-5
and 8.4410
-7
respectively
and the quadrature coupling coefficient of the developed microgyroscope is 4.7510
-5
8.7% different from the simulation value. Meanwhile
the analysis indicates that the maximum value of quadrature coupling coefficient is 2.1810
-4
7.9% different from the simulation value. Finally
the calculating result is confirmed by an experiment test. It concludes that the theoretical model of quadrature coupling coefficients can provide the theory foundation and application direction for improving the properties of silicon microgyroscopes.
施芹,苏岩,裘安萍,等. MEMS陀螺仪器件级真空封装技术[J]. 光学 精密工程, 2009, 17(8): 1987-1992.SHI Q, SU Y, QIU A P, et al.. Device level vacuum packaging technologies of MEMS gyroscopes [J]. Opt. Precision Eng., 2009, 17(8): 1987-1992. (in Chinese)[2]李建利,房建成,盛蔚,等. 双质量块调谐输出式硅MEMS陀螺仪的理论计算及仿真[J]. 光学 精密工程, 2008, 16(3): 484-491.LI J L, FANG J CH, SHENG W, et al.. Calculation and simulation of silicon MEMS gyroscope with dual-mass resonant output [J]. Opt. Precision Eng., 2008, 16(3): 484-491. (in Chinese)[3]WEINBERG M S, KOUREPENIS A. Error sources in in-plane silicon tuning-fork MEMS gyroscopes [J]. Journal of Microelectromechanical Systems,15(3), 2006:479-491.[4]杨波,周百令. 硅微陀螺仪的正交误差分析[J]. 中国机械工程, 2007, 18(10): 1182-1185.YANG B, ZHOU B L. Analysis of quadrature error of silicon micromachined gyroscope [J]. Chinese Journal of Mechanical Engineering, 2007, 18(10): 1182-1185. (in Chinese)[5]许宜申, 王寿荣, 吉训生, 等. 微机械振动陀螺仪正交误差分析 [J]. 仪器仪表学报, 2006, 27(6): 105-107.XU Y SH, WANG SH R, JI X SH, et al.. Analysis on quadrature error of micromachined vibratory gyroscope[J]. Chinese Journal of Scientific Instrument, 2006, 27(6): 105-107. (in Chinese)[6]PHANI A S, SESHIA A A, PALANIAPAN M, et al.. Modal coupling in micromechanical vibratory rate gyroscopes [J]. IEEE Sensors Journal, 2006, 6(5): 1144-1152.[7]施芹, 裘安萍, 苏岩, 等. 硅微陀螺仪的机械耦合误差分析[J]. 光学 精密工程, 2008, 16(5): 893-898.SHI Q, QIU A P, SU Y, et al.. Mechanical coupling error of silicon microgyroscope [J]. Opt. Precision Eng., 2008, 16(5): 893-898. (in Chinese)[8]裘安萍, 施芹, 苏岩, 等. 双质量振动式硅微陀螺仪:中国, ZL200710133223.5[P]. 2008-03-05.QIU A P, SHI Q, SU Y, et al.. Dual-mass vibrating silicon microgyroscope: China, ZL200710133223.5 [P]. 2008-03-05. (in Chinese)[9]刘鸿文. 材料力学Ⅱ(第4版)[M]. 北京: 高等教育出版社, 2004: 28-59.LIU H W. Mechanics of MaterialsⅡ(Fourth Edition) [M]. Beijing: Higher Education Press, 2004: 28-59. (in Chinese)[10]IYER S V. Modeling and simulation of non-idealities in a z-axis CMOS-MEMS gyroscope [D]. Pittsburgh:Carnegie Mellon University, 2003.[12]李锦明. 高信噪比电容式微机械陀螺的研究[D]. 太原:中北大学, 2005.LI J M. Research on High Signal-noise Ratio of Capacitive Micromechanical Gyroscope [D]. Taiyuan: North University of China, 2005. (in Chinese)
0
浏览量
134
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构