浏览全部资源
扫码关注微信
上海交通大学机械系统与振动国家重点实验室
收稿日期:2012-08-02,
修回日期:2012-09-12,
网络出版日期:2013-01-24,
纸质出版日期:2013-01-15
移动端阅览
杨斌堂 赵寅 彭志科 孟光. 基于Prandtl–Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制研究[J]. 光学精密工程, 2013,21(1): 124-130
YANG Bin-tang ZHAO Yin PENG ZHi-bin MENG Guang. Real-time compensation control of hysteresis based on Prandtl–Ishlinskii operator for GMA[J]. Editorial Office of Optics and Precision Engineering, 2013,21(1): 124-130
杨斌堂 赵寅 彭志科 孟光. 基于Prandtl–Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制研究[J]. 光学精密工程, 2013,21(1): 124-130 DOI: 10.3788/OPE.20132101.0124.
YANG Bin-tang ZHAO Yin PENG ZHi-bin MENG Guang. Real-time compensation control of hysteresis based on Prandtl–Ishlinskii operator for GMA[J]. Editorial Office of Optics and Precision Engineering, 2013,21(1): 124-130 DOI: 10.3788/OPE.20132101.0124.
针对超磁致伸缩驱动器(GMA)存在复杂的磁滞非线性易降低系统性能
导致系统不稳定的问题
建立了可以精确描述磁滞现象的模型并提出了合适的驱动控制方法。首先
基于Prandtl-Ishlinskii(PI)模型对GMA磁滞建模,并采用最小均方法(LMS)进行模型参数辨识,模型预测误差为0.037 9 m。接着,通过对PI模型解析求逆进行实时补偿控制,从而有效减小磁滞误差,补偿控制误差为0.309 m。实验结果证明,PI模型可以精确描述GMA磁滞现象,且具有计算简单,磁滞跟踪能力强的优点。基于该模型的实时磁滞补偿控制方法可以有效减小磁滞误差,提高GMA实时驱动定位控制精度,是实现GMA精密驱动控制的一种有效方法。
Giant Magnetostrictive Actuator(GMA) has complex hysteretic nonlinearities
which can degrade system performance and cause system instability. To solve the problem
this paper establishes a model to accurately describe hysteretic phenomenon and propose a proper method to improve real-time control accuracy. Firstly
Prandtl-Ishlinskii(PI) operator is proposed in this paper to model the hysteresis of GMA and Least Mean Square(LMS) algorithm is used identify the parameter of this model
by which the prediction error reaches up to 0.037 9 m. Then
an inverse model is established based on the PI model for real-time compensation control of the hysteresis
and the inverse control error reaches up to 0.309 m. The experimental results demonstrate that PI operator can accurately characterize the GMA hysteresis
and the model has advantages of simple calculation and strong hysteretic tracking ability. The real-time compensation control of hysteresis can effectively reduce hysteretic errors and improve real-time control accuracy. It is a effective way to achieve precision driving control of GMAs.
徐彭有,杨斌堂,孟光,等. 天文望远镜超磁致伸缩驱动器驱动模型及参数辨识[J]. 天文研究与技术,2010,7(2) :150-157.XU P Y, YANG B T, MENG G, et al.. Modeling and parameter identification for giant magnetostrictive actuators applied in driving segmented mirrors [J]. Astronomical Research & Technology, 2010, 7(2) :150-157.(in Chinese)[2]贾振元,王福吉,张菊,等.超磁致伸缩执行器磁滞非线性建模与控制[J]. 机械工程学报,2005,41(7):131-135.JIA ZH Y, WANG F J, ZHANG J, et al.. Hysteresis nonlinearity modeling and control of giant magnetostrictive actuator[J]. Chinese Journal of Mechanical Engineering, 2005, 41(7):131-135. (in Chinese)[3] 赖志林,刘向东,耿洁,等.压电陶瓷执行器迟滞的滑模逆补偿控制[J]. 光学 精密工程,2011,19(6) :1281-1290.LAI ZH L, LIU X D, GENG J, et al.. Sliding mode control of hysteresis of piezoceramic actuator based on inverse preisach compensation [J]. Opt. Precision Eng., 2011, 19(6) :1281-1290. (in Chinese)[4]李建强. 三自由度磁致伸缩驱动平台建模仿真与控制研究[D].上海:上海交通大学,2012.LI J Q. Research on a 3-D platform driven by giant Magnetostrictive actuator[D]. Shanghai:Shanghai Jiao Tong University, 2012. (in Chinese)[5]JANOCHA H, KUHNEN K. Real-time compensation of hysteresis and creep in piezoelectric actuators[J]. Sensors and Actuators, 1999, 79(2000):83-89.[6]张栋,张承进,魏强.压电微动工作台的动态迟滞模型[J]. 光学 精密工程,2009,17(3) :549-556.ZHANG D, ZHANG CH J, WEI Q. Dynamic hysteresis model of piezopositioning stage [J]. Opt. Precision Eng., 2009, 17(3) :549-556. (in Chinese).[7]徐彭有.超磁致伸缩驱动器精密位移驱动控制研究[D].上海:上海交通大学,2010.XU P Y. Research on the micro positioning control of giant magnetostrictive actuator[D]. Shanghai:Shanghai Jiao Tong University,2010. (in Chinese)[8]赵春晖,张朝柱,王立国,等. 自适应信号处理技术[M]. 北京:北京理工大学出版社,2009.ZHAO CH H, ZHANG CH ZH, WANG L G, et al.. Adaptive Signal Processing Techniques[M]. Beijing:Beijing Institute of Technology Press,2007. (in Chinese)[9]WIDRW B,STEARMS S D. Adaptive Signal Processing [M]. New Jersey:Prentice Hall,1985.[10]KUHNEN K. Modeling identification and compensation of complex hysteresis nonlinearities A modified prandtl-ishlinskii approach [J]. Europen Journal of Control, 2003, 9(4):407-418.[11]KUHNEN K, JANOCHA H. Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems[J]. Control and Intelligent Systems, 2001, 29(3):74-83.
0
浏览量
173
下载量
14
CSCD
关联资源
相关文章
相关作者
相关机构