浏览全部资源
扫码关注微信
南昌大学 机电工程学院
收稿日期:2012-10-08,
修回日期:2012-10-31,
网络出版日期:2013-02-23,
纸质出版日期:2013-02-15
移动端阅览
吴禄慎 高项清 熊辉 陈华伟. 改进的NURBS曲面片拼接算法[J]. 光学精密工程, 2013,21(2): 431-436
WU Lu-shen GAO Xiang-qing XIONG Hui CHEN Hua-wei. Improved curve surface seamless splicing based on NURBS[J]. Editorial Office of Optics and Precision Engineering, 2013,21(2): 431-436
吴禄慎 高项清 熊辉 陈华伟. 改进的NURBS曲面片拼接算法[J]. 光学精密工程, 2013,21(2): 431-436 DOI: 10.3788/OPE.20132102.0431.
WU Lu-shen GAO Xiang-qing XIONG Hui CHEN Hua-wei. Improved curve surface seamless splicing based on NURBS[J]. Editorial Office of Optics and Precision Engineering, 2013,21(2): 431-436 DOI: 10.3788/OPE.20132102.0431.
研究了已网格化的曲面片之间的拼接技术并对现有的拼接算法进行了改进。首先,根据哈特利-贾德的弦长参数化算法求取非均匀有理B样条(NURBS)曲线上的节点向量
利用节点向量和曲线反求出控制顶点,并采用投影变换的方法求出权因子。其次,根据要求调整曲面片上的控制顶点,使曲面片之间达到G1连续。最后,再对已拼接好的曲面片上的控制顶点进行整体修改,重新排列整张曲面片上的控制顶点,从而实现曲面片的无缝拼接。用专业的三维造型软件对拼接后合并的曲面片进行了测试,结果表明,该方法在保证曲面片之间G1连续的情况下可使多块曲面片实现无缝拼接,无缝拼接试验中的平均误差为0.0049°。
This paper researched a splicing technology for gridded curve surfaces and improved the existing splice algorithms. On the basis of Hartley Judd chord length parameters. the joint vectors on Non-Uniform Rational B-spline(NURBS) curves were gotten. Then
joint vectors and curves were used to calculate control peaks with a reverse method and the projection transformation means was taken to obtain the weight factors. Furthermore
the control peaks on splicing surfaces were adjusted based on the requirements to allow the curve surfaces to reach G1 continuity. Finally
control peaks on gridded curve surfaces were modified wholly and they were rearranged to splice the curve surfaces seamlessly. The curve surfaces after splicing were measured by a special 3D software
and the results show that the method can splice multiple surfaces into a whole under a condition of continuous G1
and the average error is 0.0049° in experiments.
王宵,刘会霞,梁佳洪.逆向工程技术及其应用[M].北京:化学工业出版社,2004.WANG X, LIU H X, LIANG J H. Reverse Engineering Technology and Application [M].Beijing: Chemical Industry Press,2004.(in Chinese)[2]周西军,杨海成.NURBS曲面G1光滑拼接算法[J].计算机辅助设计与图形学学报,1996,8(3):227-228.ZHOU X J, YANG H CH.G1 continuity algorithms between adjacent NURBS patches [J].Journal of Computer-Aided Design & Computer Graphics, 1996, 8(3):227-228.(in Chinese)[3]冀世军.反求工程的NURBS曲面拼接与拟合技术研究[D].哈尔滨:哈尔滨工业大学,2008,58-66.JI SH J. Research on the Key Techniques of NURBS Surface Merging and Fitting in Reverse Engineering[D] . Harbin: Harbin Industrial University, 2008,58-66.(in Chinese)[4]李英杰. NURBS曲面构造、拼接及光顺的研究与实现[D].西安:西安理工大学,2010,33-45.LI Y J. Study and Realization on Construction, Fairing and Smooth Joining between Adjacent of the NURBS Surface[D].Xi’an: Xi'an University of Technology,2010,33-45. (in Chinese)[5]于丕强,施锡泉. 双三次NURBS曲面的G1连续性条件[J].大连理工大学学报,2004,44(3):330-333.YU P Q, SHI X Q.G1 continuous conditions for bicubic NURBS surfaces [J].Journal of Dalian University of Technology, 2004,44(3): 330-333.(in Chinese)[6]HARTLEY D J, JUDD C J. Parameterization of Bezier-type B-spline curves and surfaces [J]. Computer-Aided Design, 1978, 10(1):130-134. [7]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001.SHI F ZH. Computer-Aided Geometric Design and Non-Uniform Rational B-Spline [M].Beijing: Higher Education Press,2001.(in Chinese)[8]CHENG SH H, ZHANG L T, ZHOU Y W, et al.. Intersection point G1 continuity of three patches of adjacent cubic NURBS surface [J]. International Conference on Computer Application and System Modeling, 2010,2(4):72-76.[9]陈亚文,李际军.一种可参数化可调的NURBS曲面G2光滑拼接算法[J].计算机工程与应用,2011,47(15):168-170.CHEN Y W, LI J J. Algorithm of G2 blending NURBS surfaces based on adjustable parameters [J].Computer Engineering and Applications, 2011,47(15):168-170.(in Chinese)
0
浏览量
657
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构