浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所2. 中国科学院大学3. 中国科学院长春光学精密机械与物理研究所
收稿日期:2012-03-09,
修回日期:2012-05-04,
网络出版日期:2013-02-23,
纸质出版日期:2013-02-15
移动端阅览
刘春香 郭永飞 李宁 司国良 李云飞. 星上多通道遥感图像的实时合成压缩[J]. 光学精密工程, 2013,21(2): 445-453
LIU Chun-xiang GUO Yong-fei LI Ning SI Guo-liang LI Yu-fei. Composing and compression of satellite multi-channel remote sensing images[J]. Editorial Office of Optics and Precision Engineering, 2013,21(2): 445-453
刘春香 郭永飞 李宁 司国良 李云飞. 星上多通道遥感图像的实时合成压缩[J]. 光学精密工程, 2013,21(2): 445-453 DOI: 10.3788/OPE.20132102.0445.
LIU Chun-xiang GUO Yong-fei LI Ning SI Guo-liang LI Yu-fei. Composing and compression of satellite multi-channel remote sensing images[J]. Editorial Office of Optics and Precision Engineering, 2013,21(2): 445-453 DOI: 10.3788/OPE.20132102.0445.
针对星上图像整合电路工作频率过高而造成的成像系统工作不稳定的问题,讨论了相机结构的改进,提出了一种基于现场可编程门阵列(FPGA)平台实现星上时间延迟积分CCD(TDICCD)遥感图像实时合成压缩的方法。介绍了星上多通道遥感图像实时合成压缩的原理。针对TDICCD线阵推扫成像模式的特点,使用改进的JPEG-LS压缩算法;通过自适应量化动态地控制码率,在FPGA硬件平台上实现了图像数据的实时合成压缩。试验验证结果表明,在无损压缩和2倍压缩时,系统主时钟从原来的100 MHz分别降低为80 MHz和64 MHz,整合电路的工作稳定,恢复图像的峰值信噪比(PSNR)满足大于80 dB的要求。提出算法的存储量小,处理每行的平均时间为57.5 μs,小于相机的最小行周期63 μs,满足实时性要求。本文系统可靠性高,算法稳定,实现了星上多通道时间延迟积分CCD相机内部的实时合成压缩。
To improve the understable imaging system caused by the high work frequency of image composing circuit on a satellite
the structure of a camera was innovated. A composion and compression method of Time Delay Integration CCD(TDICCD) based on a Field Programming Gate Array(FPGA) platform was proposed for satellite remote sensing data. The principle of real-time compostion and compression for multi-channel satellite remote sensing data was introduced. Then
based on the characteristics of TDICCD linear array push-broom imaging mode
the improved JPEG-LS was used. By taking adaptive quantization to control the coding rate dynamically
composion and compression of image data were simultaneously achieved on the FPGA. At last
an experiment platform was established for the validation. Experimental results indicate that the system clock has reduced to 80 MHz and 64 MHz
respectively
from the original 100 MHz in the lossless and 2-time compression and the Peak Signal Noise Ratio(Reconstruct PSNR) of the image is higher than 80 dB. As the proposed algorithm has low storage capacity
the average processing time of one line image is 57.5 μs
smaller than the smallest line period of the camera. The proposed algorithm is stable and the system is reliable and achieves the composion and compression of multi- channel TDICCD remote image within the camera.
张学全.基于FPGA的星载图像压缩系统实现方法研究[D].北京:中国科学院空间科学与应用研究中心,2009:13-26.ZHANG X Q. Implementation of Onboard Image Compression System Using FPGA[D].Beijing:Center for Space Science and Applied Research,Chinese Academy of Sciences,2009:13-26. (in Chinese)[2]吴乐南.数据压缩[M].电子工业出版社,2005:90-93.WU L N.Data Compression [M].Publishing House of Electronics Industry,2005:90-93. (in Chinese)[3]高婷,吴成柯,王柯俨,等. JPEG2000中一种EBCOT并行体系的研究[J].空间电子技术,2010,(1):70-73.GAO T, WU CH K, WANG K Y. A parallel coder for EBCOT in JPEG2000 [J].Space Electronic Technology,2010,(1):70-73. (in Chinese)[4]WANG CH,WU ZH L, CAO P, et al.. An efficient VLSI architecture for lifting-based discrete wavelet transform [C]. ICME Proceedings ,Beijing, China, 2007,1575-1578.[5]PAPADONIKOLAKIS M E, KAKAROUNTAS A P. Efficient high-performance implementation of JPEG-LS encoder [J].Journal of Real-time Image,2008,(3):303-310.[6]沈洪亮,刘金国. 基于JPEG-LS的遥感图像无损压缩技术[J].光电子技术,2009,29(3):206-210.SHEN H L, LIU J G. Lossless image compression of remote sensing images base on the JPEG-LS [J]. Optoelectronic Technology, 2009,29(3):206-210. (in Chinese)[7]SHEIKH H R, BOVIK A C. Image information and visual quality [J]. IEEE Trans. Image Processing , 2006, 15(2):430-444.[8]郝勇峥.基于JPEG-LS算法的星载图像压缩系统设计[D].西安:西安电子科技大学硕士学位论文,2011,17-24.HAO Y ZH. Design of Onboard Image Compression System Based on JPEG-LS Algorithm[D].Xi'an:Xidian University,2011,17-24. (in Chinese)[9]AMEER S,BASIR O. Image compression using plane fitting with inter-block prediction [J]. Image and Vision Computing,2009,(27):385-390.[10]王建军,刘波.适于硬件实现的无损图像压缩[J].光学 精密工程,2011,19(4):922-928. WANG J J, LIU B. Hardware implementation of lossless image compression [J]. Opt. Precision Eng., 2011,19(4):922-928. (in Chinese)[11]ZHANG X Y, CHENG X K, LI X W, et al.. Key optimization techniques in JG-LS ip core design [J].Journal of Electronics, 2010,27(1):94-98.[12]宋娟,李云松,吴成柯,等.基于L∞最小搜索和陪集码的高光谱图像无损及近无损压缩[J].电子学报,2011,39(7):1551-1555.SONG J, LI Y S, WU CH K. Lossless and near-lossless compression of hyperspectral images based on search for L∞ minimum and coset coding[J].Acta Electronica Sinica, 2011,39(7):1551-1555. (in Chinese)[13]徐勇,徐智勇,张启衡,等.适于硬件实现的低复杂度图像压缩[J].光学 精密工程,2009,17(9):2262-2267.XU Y, XU ZH Y, ZHANG Q H,et al.. Low complexity image compression scheme for hardware implementation [J]. Opt. Precision Eng., 2009, 17(9):2262-2267. (in Chinese)[14]郭永彩,苏渝维,高潮.基于FPGA的红外图像实时采集系统设计与实现[J].仪器仪表学报,2011,32(3):515-519.GUO Y C, SU Y W, GAO CH. Design and implementation of real time infrared image collection system based on FPGA [J]. Chinese Journal of Scientific Instrument,2011,32(3):515-519.[15]陈永红,史泽林, 赵怀慈,等.空谱联合预测高光谱图像无损压缩rice算法[J].仪器仪表学报,2010,31(1):105-110.CHEN Y H, SHI Z L, ZHAO H C,et al.. Spatial-spectral associated prediction-based rice algorithm for hyperspectral image lossless compression [J]. Chinese Journal of Scientific Instrument,2010,31(1):105-110.
0
浏览量
797
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构