浏览全部资源
扫码关注微信
第二炮兵工程大学 信息工程系2. 96215部队3. 西安通信学院
收稿日期:2012-11-07,
修回日期:2012-12-06,
网络出版日期:2013-02-23,
纸质出版日期:2013-02-15
移动端阅览
张士杰 李俊山 杨亚威 张仲敏. 湍流退化红外图像降晰函数辨识[J]. 光学精密工程, 2013,21(2): 514-521
ZHANG Shi-jie LI Jun-shan YANG Ya-wei ZHANG Zhong-min. Blur identification of turbulence-degraded IR images[J]. Editorial Office of Optics and Precision Engineering, 2013,21(2): 514-521
张士杰 李俊山 杨亚威 张仲敏. 湍流退化红外图像降晰函数辨识[J]. 光学精密工程, 2013,21(2): 514-521 DOI: 10.3788/OPE.20132102.0514.
ZHANG Shi-jie LI Jun-shan YANG Ya-wei ZHANG Zhong-min. Blur identification of turbulence-degraded IR images[J]. Editorial Office of Optics and Precision Engineering, 2013,21(2): 514-521 DOI: 10.3788/OPE.20132102.0514.
针对高速湍流场导致的红外成像模糊,提出了一种基于图像质量评价的湍流退化红外图像降晰函数辨识算法。利用先验知识将退化过程简化为可用参数描述的二维高斯函数形式,将退化图像分割为边缘区、纹理区和平坦区,计算不同支持域下复原图像在不同参数时的峰度值;利用曲率最大准则对得到的“峰度-参数”曲线进行相应的降晰函数参数估计,进而由支持域和对应的估计参数得到对应降晰函数并用于复原退化图像;最后对复原图像进行无参考图像质量评价
评价指标最高的复原图像对应的降晰函数即为最终辨识结果。实验结果表明:该算法能较好地辨识降晰函数参数和支持域大小,当退化图像信噪比大于30 dB时,估计参数与真实值的最大偏差小于±5%。该算法所得结果可以作为湍流退化红外图像其他复原算法的降晰函数起始估计。
A novel algorithm based on image quality assessment was proposed for a turbulence-degraded infrared image to deblur the fuzzy infrared image caused by a high-speed turbulent flow field.Firstly
the degradation process was simplified as parameter-describing 2-D Gaussian function according to the prior knowledge
the degraded image was segmented into edge region
texture region and plain region and the weighted average of those regional 2-D kurtosis were used as the image kurtosis. Then
the kurtosis of restored image varying with the parameter under different support regions was calculated and the curvature-maximum criterion was used to estimate the corresponding parameter from the “kurtosis-parameter” curve. After that
the Point Spread Function(PSF) determined by the support domain and corresponding estimated parameter were used to restore the degraded image. Finally
a no-reference image quality assessment was used to compare different restored images
and the PSF of the recovered image with the highest quality was regarded as a final identification result. Experimental results show that the proposed algorithm can identify the parameter and support region of the blur function well
and the maximum deviation of the estimated parameter and the real value is less than ±5% when the Signal to Noise Ratio(SNR) of the degraded image is larger than 30 dB. The identification results can be used as an initial PSF estimation for other turbulence-degraded infrared image restoration algorithms.
殷兴良.气动光学原理[M]. 北京:中国宇航出版社,2003.YIN X L. Principle of Aero-Optics[M]. Beijing: China Astronautics Press, 2003. (in Chinese)[2]许东,段玥,陈科杰. 基于风洞测试试验图像的湍流场光传输效应统计特性分析[J].航空兵器,2011(6):54-58.XU D,DUAN Y,CHEN K J. Analysis of the statistical properties of transmission effects in turbulence based on the wind tunnel test images [J]. Aero Weaponry, 2011(6):54-58. (in Chinese)[3]李勇,范承玉,时东锋,等. 基于加速阻尼Richardson-Lucy算法的湍流退化图像盲复原方法[J].激光与光电子学进展,2011,48(8):104-111.LI Y,FAN CH Y,SHI D F, et al.. Turbulence-degraded image blind restoration method using accelerated and damped Richardson-Lucy algorithm [J]. Laser & Optoelectronics Progress, 2011, 48 (8):104-111. (in Chinese)[4]黄德天,吴志勇.基于非负支撑域受限递归逆滤波的自适应图像盲复原[J].光学 精密工程,2012,20(9):2078-2086.HUANG D T,WU ZH Y. Adaptive blind image restoration based on NAS-RIF algorithm [J]. Opt. Precision Eng., 2012, 20(9):2078-2086. (in Chinese)[5]李勇,范承玉,时东锋.基于加速正则化RL算法的大气湍流退化图像盲复原方法[J].大气与环境光学学报,2011, 6(5):342-350.LI Y,FAN CH Y,SHI D F. Atmospheric turbulence-degraded image blind restoration method using the accelerated and regularized RL algorithm[J]. Journal of Atmospheric and Environmental Optics, 2011,6(5):342-350. (in Chinese)[6]张红民,成于思. 一种改进的总变分正则化图像盲复原方法[J]. 激光杂志,2012,33(3):27-28.ZHANG H M, CHENG Y S. A modified method for total variational regularization blind image restoration [J]. Laser Journal, 2012,33(3):27-28. (in Chinese)[7]HONG H Y, LI L C, ZHANG T X. Blind restoration of real turbulence-degraded image with complicated backgrounds using anisotropic regularization [J]. Optics Communications, 2012, 285(24): 4977–4986.[8]肖利平,陈安宏,曹 炬,等. 基于飞行参数约束的湍流退化图像快速复原算法[J]. 红外与激光工程,2008,37(3):538-541,560.XIAO L P, CHEN A H, CAO J, et al.. Fast restoration algorithm based on constraint of flight parameters for the turbulence-degraded images[J]. Infrared and Laser Engineering, 2008, 37 (3):538-541,560. (in Chinese)[9]SHACHAM O, HAIK O, YITZHAKY Y. Blind restoration of atmospherically degraded images by automatic best step-edge detection [J]. Pattern Recognition Letters, 2007, 28: 2094-2103.[10]赵剡, 宗云花, 张世军, 等. 气动光学效应降晰函数辨识与图像复原[J]. 兵工学报,2005,26(2):188-191.ZHAO Y, ZONG Y H, ZHANG SH J, et al.. Identification of blurs for aero-optics effect coordinate measuring machine [J]. Acta Armamentarii, 2005,26(2):188-191. (in Chinese)[11]邹谋炎. 反卷积和信号复原[M]. 北京:国防工业出版社,2001.ZOU M Y. Deconvolution and Signal Recovery[M]. Beijing: National Defense Industry Press, 2001. (in Chinese)[12]李俊山,李旭辉. 数字图像处理[M]. 北京:清华大学出版社,2007.LI J S, LI X H. Digital Image Processing[M].Beijing: Tsinghua University Press, 2007. (in Chinese)[13]SUTTON G W, POND J E, SNOW R, et al.. Hypersonic interceptor aero-optics performance predictions [J]. Journal of Spacer and Rockets, 1994, 31(4): 592-599.[14]BANISH M R. A validated code to predict the performance of broadband optical seekers through a turbulent transonic flow [R]. 1992. AIAA-92-2792.[15]高新波,路文. 视觉信息质量评价方法[M]. 西安:西安电子科技大学出版社,2011.GAO X B, LU W. Quality Assessment Methods for Visual Information[M].Xi′an: Xidian University Press, 2011. (in Chinese)[16]范媛媛,沈湘衡,桑英军. 基于对比度敏感度的无参考图像清晰度评价[J]. 光学 精密工程,2011,19(10):2485-2493.FAN Y Y, SHEN X H, SANG Y J. No reference image sharpness assessment based on contrast sensitivity [J]. Opt. Precision Eng., 2011,19(10):2485-2493. (in Chinese)[17]LI D L, SIMSKE S. Atmospheric turbulence degraded-image restoration by kurtosis minimization [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2):244-247.[18]CAVIEDES J, OBERTI F. A new sharpness metric based on local kurtosis, edge and energy information [J]. Signal Processing: Image Communication, 2004, 9:147-161.[19]MARDIA K V. Measures of multivariate skewness and kurtosis with applications [J]. Biometrika,1970, 57:519-530.[20]ZHANG N F, POSTEK M T, LARRABEE R D, et al.. Image sharpness measurement in scanning electron microscope -Part III [J]. Scanning, 1999, 21: 246-252.[21]RONY F, LAKSHMI G, WALID S I A. Efficient implementation of kurtosis based on reference image sharpness metric[C]. Proc. SPIE 7532, Image Processing: Algorithms and Systems VIII, San Jose, CA: SPIE-IS&T, 2010: 1-12.[22]王宇庆.局部方差在图像质量评价中的应用[J].中国光学,2011,4(5):531-536.WANG Y Q. Application of local variance in image quality assessment[J].Chinese Optics,2011,4(5):531-536. (in Chinese)[23]王斌,李洁,高新波.一种基于边缘与区域信息的先验水平集图像分割方法[J].计算机学报,2012,35(5):1067-1072.WANG B,LI J,GAO X B. A edge-and region-based level set method with shape priors for image segmentation[J].Chinese Journal of Computers,2012,35(5):1067-1072. (in Chinese)[24]LI J L, CHEN G, CHI Z R, et al.. Image coding quality assessment using fuzzy integrals with a three-component image model[J]. IEEE Trans. on Fuzzy System, 2004, 1(12): 99-106.[25]GABARDA S,CRISTOAL G. Blind image quality assessment through anisotropy[J]. Journal of the Optical Society of America, 2007, 24(12): B42-B51.
0
浏览量
1070
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构