浏览全部资源
扫码关注微信
吉林大学 计算机科学与技术学院,吉林 长春,130012
收稿日期:2013-01-11,
修回日期:2013-01-19,
纸质出版日期:2013-02-15
移动端阅览
赵宏伟 陈霄 刘萍萍 耿庆田. 视觉显著目标的自适应分割[J]. 光学精密工程, 2013,21(2): 531-538
ZHAO Hong-wei CHEN Xiao LIU Ping-ping GENG Qing-tian. Adaptive segmentation for visual salient object[J]. Editorial Office of Optics and Precision Engineering, 2013,21(2): 531-538
赵宏伟 陈霄 刘萍萍 耿庆田. 视觉显著目标的自适应分割[J]. 光学精密工程, 2013,21(2): 531-538 DOI: 10.3788/OPE.20132102.0531.
ZHAO Hong-wei CHEN Xiao LIU Ping-ping GENG Qing-tian. Adaptive segmentation for visual salient object[J]. Editorial Office of Optics and Precision Engineering, 2013,21(2): 531-538 DOI: 10.3788/OPE.20132102.0531.
基于视觉注意模型和最大熵分割算法,提出了一种自适应显著目标分割方法来分离目标和复杂背景,以便快速准确地从场景图像中检测出显著目标。首先,通过颜色、强度、方向和局部能量4个特征通道获取图像的显著图;通过引入局部能量通道来更好地描述了显著目标的轮廓。然后,根据显著图中像素灰度的强弱构建不同的目标检测蒙板,将每个蒙板作用于原图像作为预分割的结果,再计算每个预分割图像的熵。最后,利用最大熵准则估计图像目标熵
根据预分割图像的熵和目标熵判断选取最优显著目标分割图像。实验结果表明:本文算法检测的显著目标更为完整,分割性能F-measure达到0.56,查全率和查准率分别为0.69和0.41,相对于传统方法更为有效准确,实现了在复杂背景下对显著目标的有效准确检测。
On the basis of a visual attention model and a maximum entropy segmentation method
an adaptive segmentation method was proposed to segment the object from a complex background in the scene image and to detect a salient object effectively and accurately. First
the feature of original image was extracted via four channels on color
intensity
orientation and local energy. The profile of object feature was described more accurately by combining the channel of local energy with a simple biologically-inspired model. Then
object detection masks were constructed to remove background gradually according to the gray intensity of the pixels in the saliency map. By taking blend masks with the original image as a pre-segmentation result
the entropy of pre-segmentation images was computed. Finally,the entropy of salient object was estimated via maximization information entropy principle and the optimized image extraction for the salient object was obtained by estimating the relationship of entropy between salient object and masks in the saliency map. Experimental results indicate that the salient object detected by proposed method is more integrity,the F-measure of segmentation performance is 0.56, and the precision ratio and the recall ratio of detection are 0.69 and 0.41
respectively. The proposed method is more reasonable and effective than the traditional method,and it can satisfy the requirements of detecting the salient objects from complex backgrounds.
丛明煜,何文家,逯力红,等. 复杂背景成像条件下运动点目标的轨迹提取[J].光学 精密工程,2012,20(7): 211-217.CONG M Y,HE W J,LU LH, et al..Trace extraction of moving point targets in complex background images [J].Opt. Precision Eng.,2012,20(7): 211-217.(in Chinese)[2]曾文静,万磊,张铁栋,等.复杂海空背景下弱小目标的快速自动检测[J].光学 精密工程,2012,20(2): 196-205.ZHEN W J,WAN L,ZHANG T D, et al.. Fast detection of weak targets in complex sea-sky background [J].Opt. Precision Eng., 2012,20(2): 196-205.(in Chinese)[3]ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259.[4]LI Z,LTTI L. Saliency and gist features for target detection in satellite images [J]. IEEE Transactions on Image Processing, 2011, 20(7): 2017-2029. [5]HOU X D, HANG L Q. Saliency detection:a spectral residual approach [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007:1-8.[6]CHENG M M,ZHANG G X,MITRA N J, et al.. Global contrast based salient region detection [C]. IEEE CVPR, Colorado Springs, USA,2011:409-416.[7]胡正平,孟鹏权. 全局孤立性和局部同质性图表示的随机游走显著目标检测算法 [J]. 自动化学报,2011,37(10):1279-1284.HU ZH P,MENG P Q. Graph presentation random walk salient object detection algorithm based on global Isolation and local homogeneity [J].Acta Automatica Sinica,2011,37(10):1279-1284. (in Chinese)[8]赵宏伟,王慧,刘萍萍,等.有指向性的视觉注意计算机模型 [J].计算机研究与发展,2009, 46(7): 1192-1197.ZHAO H W, WANG H, LIU P P, et al.. A computer model of directional visual attention [J].Journal of Computer Research and Development. 2009, 46(7):1192- 1197. (in Chinese)[9]ANDREA P,MICHELA T,DOMENICO M, et al.. BOLD response to spatial phase congruency in human brain [J]. Vision of Journal, 2008, 8(10):1-15.[10]LINDA H,AAPO H,SIMO V. Representation of cross-frequency spatial phase relationships in human visual cortex[J]. The Journal of Neuroscience, 2009, 29(45):14342-14351.[11]VENKATESH S, OWENS R A. An energy feature detection scheme [C]. The International Conference on Image Processing,Singapore,1989:553-557.[12]MICHAEL F,GERALD S. The monogenic signal [J]. IEEE Transactions on Signal Proeessing,2001,49:3136-3144.[13]许元男,赵远,刘丽萍,等.基于Renyi熵的显著图生成与目标探测[J]. 光学 精密工程,2010,18(3):723-731.XUE Y N, ZHAO Y, LIU L P, et al.. Rényi entropy-based saliency map generation and target detection [J].Opt. Precision Eng., 2010, 18(3):723-731.(in Chinese)[14]TAMAYO N,TRAVER V J. Entropy-based saliency computation in log-polar images [C].3rd International Conference on Computer Vision Theory and Applications, Funchal, Madeira, Portugal, 2008:501-506.[15]ACHANTA R,HEMAMI S, ESTRADA F, et al.. Frequency-tuned salient region detection [C]. IEEE Conference on Computer Vision and Pattern Recognition, 2009:409-414.
0
浏览量
636
下载量
17
CSCD
关联资源
相关文章
相关作者
相关机构