浏览全部资源
扫码关注微信
四川大学 电子信息学院2. 三峡大学 理学院3. 中国工程物理研究院
收稿日期:2012-09-24,
修回日期:2012-11-15,
网络出版日期:2013-03-20,
纸质出版日期:2013-03-15
移动端阅览
叶荣 曾曙光 张彬 李恪宇. 基于单块晶体级联二阶非线性的超短激光脉冲脉宽压缩[J]. 光学精密工程, 2013,21(3): 583-589
YE Rong ZENG Shu-guang ZHANG Bin LI Ke-yu. Pulse-duration Compression of Ultra-Short Laser Pulse by Cascaded Second-Order Nonlinearity[J]. Editorial Office of Optics and Precision Engineering, 2013,21(3): 583-589
叶荣 曾曙光 张彬 李恪宇. 基于单块晶体级联二阶非线性的超短激光脉冲脉宽压缩[J]. 光学精密工程, 2013,21(3): 583-589 DOI: 10.3788/OPE.20132103.0583.
YE Rong ZENG Shu-guang ZHANG Bin LI Ke-yu. Pulse-duration Compression of Ultra-Short Laser Pulse by Cascaded Second-Order Nonlinearity[J]. Editorial Office of Optics and Precision Engineering, 2013,21(3): 583-589 DOI: 10.3788/OPE.20132103.0583.
研究了基于单块偏硼酸钡(BBO)晶体的级联二阶非线性效应实现超短激光脉冲脉宽压缩的原理。采用分步傅里叶变换及四阶龙格库塔算法对描述I类飞秒脉冲倍频过程的耦合波方程组进行了数值计算,定量分析了基频光与倍频光位相失配量、非线性晶体长度、入射基频光峰值光强和初始脉宽等因素对脉宽压缩效果的影响,并对实验参数进行了优化。采用单块BBO晶体,对中心波长为800 nm、脉宽为140 fs的超短激光脉冲开展了脉宽压窄的实验研究,获得了两倍以上的脉宽压缩倍率。对不同基频光峰值强度和不同初始脉宽下的实验结果与理论模拟结果进行了比较与分析,结果表明,倍频过程中的位相失配量、初始基频光峰值光强、脉冲啁啾,以及初始基频光脉宽等因素对脉冲压缩效果的影响较大。若要获得较高的压缩倍率,需要综合考虑上述多种因素。
The pulseduration compression principle of a ultrashort laser pulse by cascaded secondorder nonlinearity from a single barium borate (BBO) crystal was studied theoretically and experimentally. By using the splitstep Fourier transformation and fourthorder RungeKutta methods
the type I coupled wave equations describing for Second Harmonic Generation (SHG) process of femtosecond pulse were simulated and calculated. The influences of the phase mismatch between fundamental harmonic(FH) and second harmonic(SH) pulses
the length of nonlinear crystal
peak intensity and the initial pulseduration of the FH pulse on the pulseduration compression were analyzed quantitatively and the experimental parameters were also optimized. Furthermore
the experiment of the pulsewidth compression was performed for the ultrashort laser pulse with a center wavelength of 800 nm and a pulse width of 140 fs
and the pulsewidth compression of more than two times was achieved. Finally
the experimental and simulation results for different fundamental peak intensities and initial pulsewidths were compared. Obtained results show that some factors like the phase mismatch between fundamental harmonic(FH) and second harmonic(SH) pulses
peak intensity
pulse chirp and the initial pulseduration of the FH pulse have much influence on the pulse compression
so these facts mentioned above should be taken into consideration.
DUBIETIS A, VALIULIS G, TAMOSAUSKAS G, et al.. Tamononlinear second-harmonic pulse compression with tilted pulses [J]. Opt. Lett., 1997, 22(14):1071-1073.[2]TRAPANI P D, CAIRONI D, VALIULIS G, et al.. Observation of temporal solitons in second-harmonic generation with tilted pulses[J]. Phys. Rev. Lett. 1998, 81(3):570-573.[3]BLATUSKA A, UDEM T, UIBERACKER M, et al.. Attosecond control of electronic processes by intense light fields [J]. Nature, 2003, 421(6):611-615.[4]MOSES J, WISE F W. Soliton compression in quadratic media: high energy few-cycle pulses with a frequency-doubling crystal [J]. Opt. Lett., 2006, 31(12):1881-1883. [5]DESALVO R, HAGAN D J, SHEIK-BAHAE M, et al.. Self-focusing and self-defocusing by cascaded second-order effects in KTP[J]. Opt. Lett., 1992, 17(1):28-30.[6]檀慧明,BANFI G P. BBO晶体中的级联二阶过程和三阶光学非线性效应[J]. 光学 精密工程,1994, 2(6):7-17.TAN H M, BANFI G P. Cascaded second-order processes and third order optical nonlinear effects in BBO crystal[J]. Opt. Precision Eng., 1994, 2(6):7-17. (in Chinese)[7]LIU X, QIAN L J, WISE F. High-energy pulse compression by use of negative phase shifts produced by the cascade (2):(2) nonlinearity [J]. Optics Letters, 1999, 24(23):1777-1779.[8]刘红军,陈国夫,赵卫, 等. 二次谐波产生的非线性相移的解析研究[J]. 光学学报,2003, 23(1):11-17.LIU H J, CHEN G F, ZHAO W, et al.. Analytical study of nonlinear phase shifts via second-harmonic generation [J]. Acta Optica Sinica, 2003, 23(1):11~17. (in Chinese)[9]王科,钱列加,朱鹤元. 基于差频过程级联非线性的孤子脉冲压缩[J]. 科学通报, 2008, 53(1):45-48.WANG K, QIAN L J, ZHU H Y. Soliton pulse compression based on cascade nonlinearity in DFG[J]. Chinese Science Bulletin, 2008, 53(1):45-48. (in Chinese)[10]MORTEN B, MOSES J, WISE F W. Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities [J]. J. Opt. Soc. Am. B, 2007, 24(10):2572-2762.[11]MORTEN B, WISE F W. Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers [J]. Phys. Rev. A, 2010, 81(5):053815-1-053815-14.[12]SIDICK E, KNOESEN A, DIENES A. Ultrashort-pulse second-harmonic generationⅠ.Transform-limited fundamental pulses[J]. J.Opt.Soc.Am.B, 1995, 12(9):1704-1712.[13]张志刚. 飞秒激光技术[M]. 北京:科学出版社, 2011: 7-9.ZHANG ZH G. Femtosecond Laser Technology[M]. Beijing: Science Press, 2011: 7-9. (in Chinese)[14]ASHIHARA S, NISHINA J, SHIMURA T, et al.. Soliton compression of femtosecond pulses in quadratic media [J]. J. Opt.Soc.Am.B, 2002, 19(10):2505-2510.[15]HACHE F, ZEBOULON A, GALLOT G, et al.. Cascaded second-order effects in the femtosecond regime in -barium borate: self-compression in a visible femtosecond optical parametric oscillator [J]. Opt.Lett., 1995, 20(14): 1556-1558.[16]黄小军,彭翰生,魏晓峰,等.100TW级超短超强钛宝石激光装置[J]. 强激光与粒子束, 2005,17(11):1685-1688.HUANG X J, PENG H SH, WEI X F, et al.. Ultra-short ultra-intense Ti sapphire laser facility with peak power of hundred-terawatt-level [J]. High Power Laser and Particle Beams, 2005, 17(11):1685-1688. (in Chinese)
0
浏览量
114
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构