浏览全部资源
扫码关注微信
南开大学 现代光学研究所 光学信息技术科学教育部重点实验室 天津,300071
收稿日期:2012-10-11,
修回日期:2012-12-17,
网络出版日期:2013-03-20,
纸质出版日期:2013-03-15
移动端阅览
高慧 赵佳宇 刘伟伟. 超快激光成丝现象中多丝控制综述[J]. 光学精密工程, 2013,21(3): 598-607
GAO Hui ZHAO Jia-yu LIU Wei-wei. Survey on control of Multiple Filamentation induced by ultrafast laser pulses[J]. Editorial Office of Optics and Precision Engineering, 2013,21(3): 598-607
高慧 赵佳宇 刘伟伟. 超快激光成丝现象中多丝控制综述[J]. 光学精密工程, 2013,21(3): 598-607 DOI: 10.3788/OPE.20132103.0598.
GAO Hui ZHAO Jia-yu LIU Wei-wei. Survey on control of Multiple Filamentation induced by ultrafast laser pulses[J]. Editorial Office of Optics and Precision Engineering, 2013,21(3): 598-607 DOI: 10.3788/OPE.20132103.0598.
强场超快激光脉冲在光学介质中传输会引起成丝现象,而当峰值功率远大于其自聚焦阈值功率时会观察到多丝现象,一般情况下实验中观察到的多丝随机分布数量与位置不可预知。无序的多丝降低了激光光束的光斑质量,影响了光丝的能量分布,限制了超快激光脉冲成丝在实际中的应用。如何控制多丝成为当前超快激光成丝研究的热点问题。本文综述了目前控制多丝的方法,对其进行了分析比较,以期发展研究更简便实用的多丝控制方法。
During the propagation of intense ultrafast laser pulses in transparent optical media
filamentation will take place. Particularly
when the laser power is great higher than the critical power for self-focusing
multiple filaments will be observed. In practical experiments
multiple filaments are randomly distributed; the number and location of the filaments are unpredictable. The irregular distribution of filaments will decrease the quality of the beam and constitutes a serious drawback in practical applications. Thus
the study of controlling multiple filamentation has become quite active. In this paper
the methods of controlling the multiple filaments are reviewed
analyzed and compared
aiming for developing more efficient method to control multiple filamentation.
CHIN S L, BRODEUR A, PETIT S, et al.. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser) [J]. J. Nonlinear Optic. Phys. Mat., 1999, 8(1): 121-146.[2]MLEJNEK M, WRIGHT E M , MOLONEY J V. Dynamic spatial replenishment of femtosecond pulses propagating in air [J]. Opt. Lett., 1998, 23(5): 382-384.[3]LIU W, PETIT S, BECKER A, et al.. Intensity clamping of a femtosecond laser pulse in condensed matter [J]. Opt. Commun., 2002, 202(1-3): 189-197.[4]CHIN S L. Femtosecond Laser Filamentation [M]. Berlin:Springer, 2010.[5]CHIN S L, HOSSEINI S A, LIU W, et al.. The propagation of powerful femtosecond laser pulses in optical media: physics, applications, and new challenges [J]. Can. J. Phys., 2005, 83(9): 863-905. [6]COUAIRON A, MYSYROWICZ A. Femtosecond filamentation in transparent media [J]. Phys. Rep., 2007, 441(2-4): 47-189.[7]BERGL, SKUPIN S, NUTER R, et al.. Ultrashort filaments of light in weakly ionized, optically transparent media [J]. Rep. Prog. Phys., 2007, 70(10): 1633-1713.[8]BJOT P, KASPARIAN J, HENIN S, et al.. Higher-order kerr terms allow ionization-free filamenatation in gases [J]. Phys. Rev. Lett., 2010, 104(10): 103903.[9]BJOT P, HERTZ E, KASPARIAN J, et al.. Transition from plasma-driven to kerr-driven laser filamentation [J]. Phys. Rev. Lett., 2011, 106(24): 243902 (2011). [10]WANG Z X, ZHANG C J, LIU J S, et al.. Femtosecond filamentation in argon and higher-order nonlinearities [J]. Opt. Lett., 2011, 36(12): 2336-2338.[11]GAETA A L. Catastrophic collapse of ultrashort pulses[J]. Phys. Rev. Lett., 2000, 84(16): 3582-3585.[12]AKZBEK N, SCALORA M, BOWDEN C M, et al.. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air [J]. Opt. Commun., 2001, 191(3-6): 353-362.[13]AKZBEK N, IWASAKI A, BECKER A, et al.. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses [J]. Phys. Rev. Lett., 2002, 89(14): 143901.[14]NIBBERING E T J, CURLEY P F, GRILLON G, et al.. Conical emission from self-guided femtosecond pulses in air [J]. Opt. Lett., 1996, 21(1): 62-64.[15]KASPARIAN J, SAUERBREY R, MONDELAIN D, et al.. Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere [J]. Opt. Lett., 2000, 25(18): 1397-1399.[16]BRODEUR A, CHIN S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media [J]. J. Opt. Soc. Am. B, 1999, 16(4): 637-650.[17]LIU J S, SCHROEDER H, CHIN S L, et al.. Space-frequency coupling, conical waves, and small-scale filamentation in water [J]. Phys. Rev. A, 2005, 72(5): 053817.[18]LIU J S, SCHROEDER H, CHIN S L, et al.. Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation [J]. Opt. Express, 2005, 13(25): 10248-10259.[19]WANG Z X, LIU J S, LI R X, et al.. Wavefront control to generate ultraviolet supercontinuum by filamentation of few-cycle laser pulses in argon [J]. Opt. Lett., 2010, 35(2): 163-165.[20]WANG Z X, LIU J S, LI R X, et al.. Supercontinuum generation and pulse compression from gas filamentation of femtosecond laser pulses with different durations [J]. Opt. Express, 2009, 17(16): 13841-13850.[21]KANDIDOV V P, KOSAREVA O G, GOLUBTSOV I S, et al.. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation) [J]. Appl. Phys. B, 2003, 77(2-3): 149-165.[22]KASPARIAN J, SAUERBREY R, CHIN S L. The critical laser intensity of self-guided light filaments in air [J]. Appl. Phys. B, 2000, 71(6): 877-879.[23]HAURI C P, KORNELIS W, HELBING F W, et al.. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation [J]. Appl. Phys. B, 2004, 79(6): 673-677.[24]CHEN X, LENG Y, LIU J, et al.. Pulse self-compression in normally dispersive bulk media [J]. Opt. Commun., 2006, 259(1):331-335.[25]LIU J S, LI R X, XU Z Z. Few-cycle spatiotemporal soliton wave excited by filamentation of a femtosecond laser pulse in materials with anomalous dispersion [J]. Phys. Rev. A, 2006, 74(4): 043801.[26]KASPARIAN J, RODRIGUEZ M, MJEAN G, et al.. White-light filaments for atmospheric analysis [J]. Science, 2003, 301(5629): 61-64.[27]KASPARIAN J, WOLF J-P. Physics and applications of atmospheric nonlinear optics and filamentation [J]. Opt. Express, 2008, 16(1): 466-493.[28]XU H L, CHIN S L. Femtosecond laser filamentation for atmospheric sensing [J]. Sensors, 2011, 11(1): 32-53.[29]DAVIS K M, MIURA K, SUGIMOTO N, et al.. Writing waveguides in glass with a femtosecond laser [J]. Opt. Lett., 1996, 21(21): 1729-1731.[30]SALIMINIA A, NGUYEN N T, NADEAU M-C, et al.. Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses [J]. J. Appl. Phys., 2003, 93(7): 3724-3728.[31]TZORTZAKIS S, SUDRIE L, FRANCO M, et al.. Self-guided propagation of ultrashort IR laser pulses in fused silica [J]. Phys. Rev. Lett., 2001, 87(21): 213902.[32]AKTURK S, COUAIRON A, FRANCO M, et al.. Spectrogram representation of pulse self compression by filamentation [J]. Opt. Express, 2008, 16(22): 17626-17636.[33]COUAIRON A, BIEGERT J, HAURI C P, et al.. Self-compression of ultra-short laser pulses down to one optical cycle by filamentation [J]. J. Mod. Opt., 2008, 53(1-2): 75-85.[34]KOSAREVA O G, MURTAZIN I N, PANOV N A, et al.. Pulse shortening due to filamentation in transparent medium [J]. Laser Phys. Lett., 2007, 4(2): 126-132.[35]ROHWETTER P, KASPARIAN J, STELMASZCZYK K, et al.. Laser-induced water condensation in air [J]. Nature Photonics, 2010, 4(7): 451-456.[36]JU J, LIU J, WANG C, et al.. Laser-filamentation-induced condensation and snow formation in a cloud chamber [J]. Opt. Lett., 2012, 37(7): 1214-1216.[37]JU J J, LIU J S, WANG C, et al.. Effects of initial humidity and temperature on laser-filamentation-induced condensation and snow formation [J]. Appl. Phys. B, 2012: 1-6.[38]CHIN S L, AKZBEK N, PROULX A, et al.. Transverse ring formation of a focused femtosecond laser pulse propagating in air [J]. Opt. Commun., 2001, 188(1-4): 181-186.[39]LIU W, GRAVEL J F, THBERGE F, et al.. Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air [J]. Appl. Phys. B, 2005, 80(7): 857-860.[40]KANDIDOV V P, KOSAREVA O G, KOLTUNA A A. Nonlinear-optical transformation of a high-power femtosecond laser pulse in air [J]. Quantum Electron., 2003, 33(1): 69-75.[41]BESPALOV V I, TALANOV V I. Filamentary structure of light beams in nonlinear liquids [J]. JETP Lett., 1966, 3(12): 307-312.[42]CHIN S L, TALEBPOUR A, YANG J, et al.. Filamentation of femtosecond laser pulses in turbulent air [J]. Appl. Phys. B, 2002, 74(1):67-76.[43]CHIN S L, PETIT S, LIU W, et al.. Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air [J]. Opt. Commun., 2002, 210(3): 329-341.[44]HOSSEINI S A, LUO Q, FERLAND B, et al.. Competition of multiple filaments during the propagation of intense femtosecond laser pulses [J]. Phys. Rev. A, 2004, 70(3): 033802.[45]MLEJNEK M, KOLESIK M, MOLONEY J V, et al.. Optically turbulent femtosecond light guide in air [J]. Phys. Rev. Lett., 1999, 83(15): 2938-2941.[46]COOK K, KAR A K, LAMB R A. White-light supercontinuum interference of self-focused filaments in water [J]. Appl. Phys. Lett., 2003, 83(19): 3861-3863.[47]CHTEAUNEUF M, PAYEUR S, DUBOIS J, et al.. Microwave guiding in air by a cylindrical filament array waveguide [J]. Appl. Phys. Lett., 2008, 92(9): 091104.[48]SHNEIDER M N, ZHELTIKOV A M, MILES R B. Long-lived laser-induced microwave plasma guides in the atmosphere: self-consistent plasma-dynamic analysis and numerical simulations [J]. J. Appl. Phys., 2010, 108(3): 033113.[49]VALUEV V V, DORMIDONOV A E, KANDIDOV V P, et al.. Plasma channels formed by a set of filaments as a guiding system for microwave radiation [J]. J. Commun. Technol. El., 2010, 55(2): 208-214.[50]KOSAREVA O G, NGUYEN T, PANOV N A, et al.. Array of femtosecond plasma channels in fused silica [J]. Opt. Commun., 2006, 267(2): 511-523.[51]FIBICH G, EISENMANN S, ILAN B, et al.. Control of multiple filamentation in air [J]. Opt. Lett., 2004, 29(15): 1772-1774.[52]LUO Q, HOSSEINI S A, LIU W, et al.. Effect of beam diameter on the propagation of intense femtosecond laser pulses [J]. Appl. Phys. B, 2004, 80(1): 35-38.[53]KOSAREVA O G, PANOV N A, AKZBEK N, et al.. Controlling a bunch of multiple filaments by means of a beam diameter [J]. Appl. Phys. B, 2005, 82(1): 111-122.[54]SUN X D, XU S Q, ZHAO J Y, et al.. Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air [J]. Opt. Express, 2012, 20(4): 4790-4795.[55]GAARDE M B, COUAIRON A. Intensity spikes in laser filamentation: diagnostics and application [J]. Phys. Rev. Lett., 2009, 103(4): 043901.[56]HAO Z Q, ZHANG J, XI T T, et al.. Optimization of multiple filamentation of femtosecond laser pulses in air using a pinhole [J]. Opt. Express, 2007, 15(24): 16102-16109.[57]PFEIFER T, GALLMANN L, ABEL M J, et al.. Circular phase mask for control and stabilization of single optical filaments [J]. Opt. Lett., 2006, 31(15): 2326-2328.[58]FU Y, XIONG H, XU H, et al.. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate [J]. Opt. Lett., 2009, 34(23): 3752-3754.[59]MCLEOD H. The axicon: a new type of optical element [J]. J. Opt. Soc. Am., 1954, 44(8): 592-592.[60]DURNIN J, MICELI JR J J, EBERLY J H. Diffraction-free beams [J]. Phys. Rev. Lett., 1987, 58(15): 1499-1501.[61]SCOTT G, MCARDLE N. Efficient generation of nearly diffraction-free beams using an axicon [J]. Opt. Eng., 1992, 31(12): 2640-2643.[62]AKTURK S, ZHOU B, FRANCO M, et al.. Generation of long plasma channels in air by focusing ultrashort laser pulses with an axicon [J]. Opt. Commun., 2009, 282(1): 129-134.[63]POLYNKIN P, KOLESIK M, ROBERTS A, et al.. Generation of extended plasma channels in air using femtosecond Bessel beams [J]. Opt. Express, 2008, 16(20) : 15733-15740.[64]SONG Z M, ZHANG Z G, NAKAJIMA T. Transverse-mode dependence of femtosecond filamentation [J]. Opt. Express, 2009, 17(15) : 12217-12229.[65]MCHANIN G, COUAIRON A, FRANCO M, et al.. Organizing Multiple Femtosecond Filaments in Air [J]. Phys. Rev. Lett., 2004, 93(3): 035003.[66]LIU J S, SCHROEDER H, CHIN S L, et al.. Ultrafast control of multiple filamentation by ultrafast laser pulses [J]. Appl. Phys. Lett., 2005, 87(16): 161105.[67]SCHROEDER H, LIU J, CHIN S L. From random to controlled small-scale filamentation in water [J]. Opt. Express, 2004, 12(20): 4768-4774.[68]PANOV N A, KOSAREVA O G , MURTAZIN I N. Ordered filaments of a femtosecond pulse in the volume of a transparent medium [J]. J. Opt. Technol., 2006, 73(11): 778-785.[69]HAURI C P, GAUTIER J, TRISORIO A, et al.. Two-dimensional organization of a large number of stationary optical filaments by adaptive wave front control [J]. Appl. Phys. B, 2008, 90(3): 391-394.[70]ROHWETTER P, QUEISSER M, STELMASZCZYK K, et al.. Laser multiple filamentation control in air using a smooth phase mask [J]. Phys. Rev. A, 2008, 77(1): 013812.[71]LIU L, WANG C, CHENG Y, et al.. Fine control of multiple femtosecond filamentation using a combination of phase plates [J]. J. Phys. B: At. Mol. Opt. Phys., 2011, 44(21): 215404.[72]FU Y, GAO H, CHU W, et al.. Control of filament branching in air by astigmatically focused femtosecond laser pulses [J]. Appl. Phys. B, 2011, 103(2): 435-439.[73]DUBIETIS A, TAMOGAUSKAS G, FIBICH G, et al.. Multiple filamentation induced by input-beam ellipticity [J]. Opt. Lett., 2004, 29(10): 1126-1128.[74]GROW T D, GAETA A L. Dependence of multiple filamentation on beam ellipticity [J]. Opt. Express, 2005, 13(12): 4594-4599.[75]MAJUS D, JUKNA V, VALIULIS G, et al.. Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams [J]. Phys. Rev. A, 2009, 79(3): 033843.[76]MAJUS D, JUKNA V, TAMOAUSKAS G, et al.. Three-dimensional mapping of multiple filament arrays [J]. Phys. Rev. A, 2010, 81(4): 043811.[77]SUN X D, GAO H, ZENG B, et al.. Multiple filamentation generated by focusing femtosecond laser with axicon [J]. Opt. Lett., 2012, 37(5): 857-859.[78]GAO H, SUN X D, ZENG B, et al.. Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol [J]. J. Opt., 2012, 14(6): 065203.
0
浏览量
124
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构