浏览全部资源
扫码关注微信
西安电子科技大学 电子工程学院2. 西安电子科技大学
收稿日期:2012-09-28,
修回日期:2012-12-03,
网络出版日期:2013-03-20,
纸质出版日期:2013-03-15
移动端阅览
王良君 石光明 李甫 史思琦. 混合观测压缩感知图像多描述编码[J]. 光学精密工程, 2013,21(3): 724-733
WANG Liang-jun SHI Guang-ming LI Fu SHI Si-qi. Compressive Sensing Multiple Description Image Coding with Hybrid Sampling[J]. Editorial Office of Optics and Precision Engineering, 2013,21(3): 724-733
王良君 石光明 李甫 史思琦. 混合观测压缩感知图像多描述编码[J]. 光学精密工程, 2013,21(3): 724-733 DOI: 10.3788/OPE.20132103.0724.
WANG Liang-jun SHI Guang-ming LI Fu SHI Si-qi. Compressive Sensing Multiple Description Image Coding with Hybrid Sampling[J]. Editorial Office of Optics and Precision Engineering, 2013,21(3): 724-733 DOI: 10.3788/OPE.20132103.0724.
提出一种混合观测压缩感知多描述编码方案,用于提升传统的该类编码系统的编码性能并保留其抗丢包能力。该方案采用二维离散余弦变换(DCT)观测矩阵和高斯矩阵分别对图像信号进行观测
并分别使用哥伦布码(Golomb code)及其改进的编码方案对两种观测系数进行熵编码,得到包含完整码字的二维DCT码流和仅包含部分码字的高斯观测系数码流。在解码端,利用二维DCT系数和高斯观测系数之间的相关性进行最大后验概率估计解码,成功估计出高斯观测系数的缺失码字。最后再将两种观测系数合并,采用1范数优化算法重构出原信号。针对自然图像和遥感图像的实验均表明:不同丢包情况下,用本文提出的编码方案获得的重构图像的峰值信噪比(PSNR)值比传统高斯观测压缩感知编码方案提高了2~4dB,该方案同时还具有鲁棒的抗丢包能力。
A Compressive Sensing(CS) multiple description coding scheme with hybrid sampling was proposed to improve the coding efficiency of the traditional CS coding system and to maintain the ability of resisting packet loss. In the scheme
both 2-D Discrete Cosine Transformation( DCT) matrix and sub-Gaussian matrix were used to measure the image signal simultaneously. Then
a Golomb code and its improved version were used to encode for the resulted measurements
respectively. As a result
the 2-D DCT measurement bit streams with complete code words and the Gaussian measurement bit streams with incomplete code words were obtained respectively. In the decoder
these incomplete code words could be decoded successfully with a Maximum A posteriori Probability (MAP) estimator
and the deficient code words could be estimated by the relevance between 2-D DCT and Gaussian measurements. Finally
these decoded measurements were grouped together again to reconstruct the image signal by solving a 1-norm optimization problem. Experimental results on both natural and remote sensing images show that the Peak Signal to Noise Ratio(PSNRs) of the images reconstructed by proposed method can be superior to that of traditional CS coding scheme by 2~4 dB at different packet loss rates
meanwhile
it has a robust resisting packet loss ability.
MOHR A E,RISKIN E A, LADNER R E. Unequal loss protection: graceful degradation of image quality over packet erasure channels through forward error correction [J]. IEEE Journal on Selected Areas in Communications, 2000, 18(6): 819-828.[2]CANDES E, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.[3]DONOHO D L. Compressed sensing [J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.[4]刘欣悦,董磊,王建立. 稀疏采样傅里叶望远镜成像[J]. 光学 精密工程,2010, 18(3): 521-527.LIU X Y, DONG L, WANG J L. Fourier telescopy imaging via sparse sampling [J]. Opt. Precision Eng., 2010, 18 (3): 521-527. (in Chinese)[5]石文轩, 李婕. 最小化预测残差的图像序列压缩感知[J]. 光学 精密工程,2012, 20(9): 2095-2102.SHI W X, LI J. Image sequence compressed sensing by minimizing prediction errors [J]. Opt. Precision Eng., 2012, 20(9): 2095-2102. (in Chinese)[6]WILLETT R, MARCIA R, NICHOLS J. Compressed sensing for practical optical imaging systems: a tutorial [J]. Optical Engineering, 2011, 50(7): 1-13.[7]FRIBOULET D, LIEBGOTT H, PROST R. Compressive sensing for raw RF signals reconstruction in ultrasound [C]. IEEE International Ultrasonics Symposium, 2010: 367-370.[8]ZHANG J, ZHAO D B, ZHAO C, et al.. Compressed sensing recovery via collaborative sparsity [C]. Proc. of IEEE Data Compression Conference, 2012: 287-296. [9]WANG L J, WU X L, SHI G M. Multiple description video coding against both erasure and bit errors by compressive sensing [C]. Visual Communication and Image Processing, 2011: 1-4. [10]GOYAL V K, FLETCHER A K, RANGAN S. Compressive sampling and lossy compression [J]. IEEE Signal Process. Mag., 2008, 25(2): 48-56.[11]BOUFOUNOS P, BARANIUK R. Quantization of sparse representations [C]. Proc. Data Compression Conf., 2007: 378-387.[12]WU X L, DONG W S, ZHANG X J, et al.. Model-assisted adaptive recovery of compressed sensing with imaging application [J]. IEEE Trans On Image Processing, 2012, 21(2): 451-458.[13]GOLOMB S W. Run-length encodings [J]. IEEE Transactions on Information Theory, 1966, 12(3): 399-401.[14]RICE R F, PLAUNT R. Adaptive variable-length coding for efficient compression of spacecraft television data [J]. IEEE Transactions on Communications, 1971, 16(9): 889897.[15]徐勇, 徐智勇, 张启衡. 基于游程和扩展指数哥伦布编码的任意形状感兴趣区域图像编码[J]. 光学 精密工程,2011, 19(1): 175-182.XU Y, XU ZH Y, ZHANG Q H. Arbitrary shaped ROI image coding using Run-length coding and generalized Exp-golomb coding [J]. Opt. Precision Eng., 2011, 19 (1): 175-182. (in Chinese) [16]ROBINSON T. Shorten: Simple lossless and near-lossless waveform compression [R]. Technical Report 156, Engineering Department, Cambridge University, 1994.[17]WANG L J, WU X L, SHI G M. Binned progressive quantization for compressive sensing [J]. IEEE Transactions on Image Processing, 2012, 21(6): 2980-2990.[18]JI S H , XUE Y , CARIN L. Bayesian compressive sensing [J]. IEEE Trans on Signal Processing, 2008, 56(6): 2346-2356.[19]WANG Y L, YANG J F, YIN W T, et al.. A new alternating minimization algorithm for total variation image reconstruction [J]. SIAM Journal of Imaging Science, 2008, 1: 248-272.[20]BECK A, TEBOULLE M. A fast Iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
0
浏览量
202
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构