浏览全部资源
扫码关注微信
沈阳工业大学 视觉检测技术研究所2. 沈阳工业大学 信息科学与工程学院
收稿日期:2012-10-24,
修回日期:2012-12-12,
网络出版日期:2013-03-20,
纸质出版日期:2013-03-15
移动端阅览
林森 苑玮琦. 离焦状态下的模糊掌纹识别[J]. 光学精密工程, 2013,21(3): 734-741
LIN Sen YUAN Wei-qi. Blurred palmprint recognition under defocus status[J]. Editorial Office of Optics and Precision Engineering, 2013,21(3): 734-741
林森 苑玮琦. 离焦状态下的模糊掌纹识别[J]. 光学精密工程, 2013,21(3): 734-741 DOI: 10.3788/OPE.20132103.0734.
LIN Sen YUAN Wei-qi. Blurred palmprint recognition under defocus status[J]. Editorial Office of Optics and Precision Engineering, 2013,21(3): 734-741 DOI: 10.3788/OPE.20132103.0734.
针对掌纹识别时非接触信号采集可能出现的离焦状态会导致掌纹模糊,从而降低识别系统性能的问题,提出了一种基于稳定特征的模糊掌纹识别方法。建立了掌纹的离焦退化数学模型;在分析模糊机理的基础上,使用拉普拉斯平滑变换提取模糊掌纹的低频系数作为稳定特征,利用特征向量之间的欧式距离进行匹配和判别。文中给出了算法的步骤,并通过实验确定了需要选取的低频系数的个数。在建立的SUT-D模糊掌纹库上进行了识别测试,结果表明本文算法的等误率可达17.101 7%,与传统的DCT变换及Eigen Palm,Palm Code等8种典型识别方法比较,等误率最高可降低7.908 4%。这些结果显示本文方法不但能够提升识别效果,而且特征维数较低,改善了模糊掌纹识别系统的性能。
As the defocus status in non-contact signal acquisition for palmprint recognition might blur palmprint and degrade the performance of a recognition system
a novel scheme based on stable features was proposed for the blurred palmprint recognition. Firstly
a mathematical model of defocus degeneration was established. Then
the blur mechanism was analyzed in detail and the Laplacian Smoothing Transform (LST) was employed to extract low-frequency coefficients from blurred palmprint as stable features. Furthermore
the Euclidean distance between the feature vectors was used for matching and discriminating. With the experiments
the operation steps of the algorithm was given and the number of low-frequency coefficients were determined. The experiments based on the self-made SUT-D blurred palmprint database were performed. Obtained results show that the proposed algorithm can get Equal Error Rate (EER) of 17.1017%
which has been maximally reduced by 7.9084% compared with those from other typical recognition methods such as traditional Discrete Cosine Transform (DCT)
Eigen Palm and the Palm Code. These results show that the proposed scheme not only has higher recognition efficiency but also has a low dimension
so it significantly improves the performance of the blurred palmprint recognition systems.
SHU W, ZHANG D. Automated personal identification by palmprint[J]. Optical Engineering, 1998, 37(8):2359-2362.[2]ZHANG D, KONG W K, YOU J, et al.. Online palmprint identification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1041-1050.[3]KONG A, ZHANG D, KAMEL M. A survey of palmprint recognition [J]. Pattern Recognition, 2009, 42(7):1408-1418.[4]邬向前,张大鹏,王宽全. 掌纹识别技术[M]. 北京:科学出版社, 2006.WU X Q, ZHANG D P, WANG K Q. Palmprint Recognition [M].Beijing: Science Press, 2006. (in Chinese)[5]HUANG D S, JIA W, ZHANG D. Palmprint verification based on principal lines [J]. Pattern Recognition, 2008, 41(4): 1316-1328.[6]苑玮琦,谷宗辉. 全手掌纹5类主线特征选择方法研究[J]. 仪器仪表学报, 2012,33(4):942-948.YUAN W Q, GU Z H. Research on feature selection method based on five classes of palmprint principal lines on the whole palm [J]. Chinese Journal of Scientific Instrument, 2012, 33(4):942-948. (in Chinese)[7]BADRINATH G S, GUPTA P. Palmprint based recognition system using phase-difference information [J]. Future Generation Computer Systems, 2012, 28(1): 287-305.[8]MICHAEL G K O, CONNIE T, TEOH A B J. Touch-less palm print biometrics: Novel design and implementation [J]. Image and Vision Computing, 2008, 26(12): 1551-1560.[9]CHOGE H K, OYAMA T, KARUNGARU S, et al.. Palmprint recognition based on local DCT feature Extraction [C]. Proceedings of 16th International Conference on Neural Information Processing, Bangkok, Thailand, 2009: 639-648.[10]SRINIVAS B G, GUPTA P. Palmprint based verification system using SURF features[C]. Proceedings of the 2nd International Conference on Contemporary Computing, Noida, India, 2009:250-262.[11]苑玮琦,范永刚,柯丽. 基于灰度曲面匹配的掌纹识别方法[J]. 光电子激光, 2009,20(6):807-811. YUAN W Q, FAN Y G, KE L. Palmprint recognition method based on gray surface matching [J]. Journal of OptoelectronicsLaser, 2009, 20(6):807-811. (in Chinese)[12]LU G M, ZHANG D, WANG K Q. Palmprint recognition using eigenpalms features [J]. Pattern Recognition Letters, 2003, 24(9-10): 1463-1467. [13]桑海峰,苑玮琦,张志佳,等. 基于二维主成分分析的掌纹识别研究[J].仪器仪表学报, 2008,29(9):1929-1932.SANG H F, YUAN W Q, ZHANG ZH J, et al.. Palmprint recognition based on two-dimensional principal component analysis [J]. Chinese Journal of Scientific Instrument, 2008, 29(9):1929-1932. (in Chinese)[14]郭金玉,苑玮琦. 基于二维Fisher线性判别的掌纹识别方法[J]. 计算机工程, 2008,34(6):212-213.GUO J Y, YUAN W Q. Palmprint recognition based on two-dimensional Fisher linear discriminant [J]. Computer Engineering, 2008, 34(6):212-213. (in Chinese)[15]CHORAS M, KOZIK R. Contactless palmprint and knuckle biometrics for mobile devices [J]. Pattern Analysis and Applications, 2012, 15(1):73-85.[16]KANHANGAD V, KUMAR A, ZHANG D. A unified framework for contactless hand verification [J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1014-1027.[17]MICHAEL G K O, CONNIE T, JIN A T B. Design and implementation of a contactless palmprint and palm vein sensor [C]. Proceedings of 11th International Conference on Control, Automation, Robotics and Vision, Singapore, 2010: 1268-1273.[18]苑玮琦,冯素月. 改进的非接触式在线掌纹识别模拟系统[J]. 光学学报, 2011,31(7): 0712003.YUAN W Q, FENG S Y. Simulation system of improved non-contact on-line palmprint recognition [J]. Acta Optica Sinica, 2011, 31(7): 0712003. (in Chinese)[19]SANG H F, LIU F. Defocused palmprint recognition using 2DPCA [C]. Proceedings of International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China, 2009: 611-615.[20]赵金宇,吴元昊,贾建禄,等. 基于实时波前信息的图像复原[J]. 光学 精密工程, 2012, 20(6): 1350-1356.ZHAO J Y, WU Y H, JIA J L, et al.. Image restoration based on real time wave-front information [J]. Opt. Precision Eng., 2012, 20(6): 1350-1356. (in Chinese)[21]KANG B J, PARK K R. Real-time image restoration for iris recognition systems [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(6): 1555-1566.[22]FAN X, ZHANG Q, LIANG D Q, et al.. Face image restoration based on statistical prior and image blur measure[C]. Proceedings of the IEEE International Conference on Multimedia and Expo, Piscataway, NJ, USA, 2003: 297-300.[23]LEE E C, PARK K R. Image restoration of skin scattering and optical blurring for finger vein recognition [J]. Optics and Lasers in Engineering, 2011, 49(7): 816-828.[24]吴丹阳,张忠波,马驷良. 非接触式掌纹识别中的图像复原方法[J]. 吉林大学学报(理学版), 2008,46(2):293-295.WU D Y, ZHANG ZH B, MA S L. An image restoration method in the contactless palmprint recognition [J]. Journal of Jilin University (Science Edition), 2008, 46(2):293-295. (in Chinese)[25]温博,张启衡,张建林. 应用自解卷积和增量Wiener滤波实现迭代盲图像复原[J]. 光学 精密工程, 2012, 20(12): 3049-3055.WEN B, ZHANG Q H,ZHANG J L.Realization of iterative blind image restoration by self deconvolution and increment Wiener filter [J]. Opt. Precision Eng., 2012, 20(12): 3049-3055. (in Chinese)[26]梁春,沈建新,钮赛赛. 基于半盲解卷积复原的高分辨率视网膜成像系统[J]. 光学 精密工程, 2012, 20(6): 1374-1381.LIANG CH,SHEN J X,NIU S S. High resolution retinal imaging system based on semi-blind deconvolution restoration [J]. Opt. Precision Eng., 2012, 20(6): 1374-1381. (in Chinese)[27]ZHUO S J, SIM T. Defocus map estimation from a single image [J]. Pattern Recognition, 2011, 44(9): 1852-1858.[28]GU S C, TAN Y, HE X G. Laplacian smoothing transform for face recognition [J]. Science China-Information Sciences, 2010,53(12): 2415-2428.[29]翟永平,周东翔,刘云辉,等. 聚焦函数性能评价指标设计及最优函数选取[J]. 光学学报,2011,31(4): 0418002.ZHAI Y P, ZHOU D X, LIU Y H, et al.. Design of evaluation index for auto-focusing function and optimal function selection [J]. Acta Optica Sinica, 2011, 31(4): 0418002. (in Chinese)
0
浏览量
200
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构