浏览全部资源
扫码关注微信
华中科技大学 电子与信息工程系/光电国家实验室2. 武汉大学 测绘遥感信息工程国家重点实验室
收稿日期:2012-08-23,
修回日期:2012-10-18,
网络出版日期:2013-03-20,
纸质出版日期:2013-03-15
移动端阅览
邵振峰 陈敏. 尺度、旋转以及亮度稳健的高分辨率影像直线特征匹配[J]. 光学精密工程, 2013,21(3): 790-798
SHAO Zhen-feng CHEN Min. Line-based matching for high-resolution images with robust for scale, rotation and illumination[J]. Editorial Office of Optics and Precision Engineering, 2013,21(3): 790-798
邵振峰 陈敏. 尺度、旋转以及亮度稳健的高分辨率影像直线特征匹配[J]. 光学精密工程, 2013,21(3): 790-798 DOI: 10.3788/OPE.20132103.0790.
SHAO Zhen-feng CHEN Min. Line-based matching for high-resolution images with robust for scale, rotation and illumination[J]. Editorial Office of Optics and Precision Engineering, 2013,21(3): 790-798 DOI: 10.3788/OPE.20132103.0790.
针对点特征匹配方法中特征的独特性不高,在弱纹理区域的影像匹配存在不足等问题,提出了一种尺度、旋转以及亮度稳健的高分辨率影像直线段特征匹配方法。首先,对待匹配的影像进行边缘检测和拟合,提取直线段特征;然后,将直线段特征分级,利用特征的方向关系匹配长直线段特征;最后,以同名长直线段特征对作为控制基础,以角度和距离作为量化特征,构造关系描述符,实现短直线段特征的匹配。实验结果表明,由于在同一幅影像中,每条特征直线段所在直线都有唯一对应的直线方程,特征的独特性很高,所以可以很好地避免误匹配,得到的正确匹配概率为90%以上,且均方根误差达到了亚像素级。该匹配方法在弱纹理区域比点特征匹配方法具有明显的优势,能够较好地满足应用需求。
A line feature matching method for high-resolution images was proposed to improve the low significant level of a point feature and to overcome the matching shortage between weak texture images. Firstly
the edges of images were extracted and tracked to fit straight-lines. All straight-lines were classified into two groups: long-lines and short-lines. The long-lines were matched based on the direction relationship primarily. Then
the relationship-descriptors of short-lines were constructed using the angle and the Euclidean distance between the short-line and long correspondences. Finally
short-lines were matched according to the similarity of their relationship-descriptors. The experimental results demonstrate that the proposed line matching algorithm is robust for the scale
rotation and illumination. As all the lines have a corresponding linear equation in the same image
the image feature has higher significant level and can avoid the mismatching. The probability of correct matches of the algorithm exceeds 90% and its root mean square error has achieved sub-pixel level. The performance of the proposed algorithm is better than that of the point-based method
especially in weak texture areas.
LI CH, ZHOU Y. 3D auto-reconstruction for street elevation based on line and plane feature [C]. 2010 The 2nd International Conference on Computer and Automation Engineering, 2010: 460-466.[2]JIANG M Q, HONG J X, LIAO Q W, et al.. A SIFT-based method for image mosaic [C]. 2010 3rd International Conference on Advanced Computer Theory and Engineering, Chengdu, China, 2010: 423-427.[3]SINHA S N, FRAHM J M, POLLEFEYS M, et al.. Feature tracking and matching in video using programmable graphics hardware [J]. Machine Vision and Applications, 2011, 22(1): 207-217.[4]张叶,曲宏松,王延杰. 运用旋转无关特征线实现景象匹配[J]. 光学 精密工程,2009,17(7):1759-1765.ZHANG Y, QU H S, WANG Y J. Implementation of scene matching based on rotation invariant keylines [J]. Opt. Precision Eng., 2009,17 (7): 1759-1765. (in Chinese)[5]MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10):1615-1630.[6]LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2):91-110.[7]丘文涛, 赵建, 刘杰.结合区域分割的SIFT图像匹配方法\[J\]. 液晶与显示,2012, 27 (6): 827-831.QIU W T, ZHAO J, LIU J. Image matching algorithm combing SIFT with region segmentation\[J\]. Chinese Journal of Liquid Crystals and Displays,2012, 27 (6): 827-831.(in Chinese)[8]KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors [C]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004:511-517.[9]BELONGIE S, MALIK J, PUZICHA J. Shape matching and object recognition using shape contexts [J]. IEEE Transactions on Analysis and Machine Intelligence, 2002, 24(4):509-522.[10] FREEMAN W, ADELSON E. The design and use of steerable filters [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(9):891-906.[11]MONTESINOS P, GOUET V, DERICHE R. Differential invariants for color images [C]. Proceedings of 14th International Conference on Pattern Recognition, Brisbane, Australia, August, 1998: 838-840.[12]纪华,吴元昊,孙宏海,等. 结合全局信息的SIFT特征匹配算法[J]. 光学 精密工程,2009,17(2):439-444.JI H, WU Y H, SUN H H, et al.. SIFT feature matching algorithm with global information [J]. Opt. Precision Eng., 2009, 17(2): 439-444. (in Chinese)[13]杨晓敏,吴炜,卿粼波,等. 图像特征点提取及匹配技术[J]. 光学 精密工程,2009,17(9):2276-2282.YANG X M, WU B, QING L B, et al.. Image feature extraction and matching technology [J]. Opt. Precision Eng., 2009, 17(9): 2276-2282.
0
浏览量
192
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构