浏览全部资源
扫码关注微信
西安电子科技大学 机电工程学院2. 西北工业大学 第365研究所
收稿日期:2012-09-19,
修回日期:2012-11-05,
网络出版日期:2013-04-20,
纸质出版日期:2013-04-15
移动端阅览
孙伟 李大健 刘宏娟 贾伟. 基于大气散射模型的单幅图像去雾[J]. 光学精密工程, 2013,21(4): 1040-1046
SUN Wei LI Da-jian LIU Hong-juan JIA Wei. Fast Single Image Fog Removal based on Atmospheric Scattering Model[J]. Editorial Office of Optics and Precision Engineering, 2013,21(4): 1040-1046
孙伟 李大健 刘宏娟 贾伟. 基于大气散射模型的单幅图像去雾[J]. 光学精密工程, 2013,21(4): 1040-1046 DOI: 10.3788/OPE.20132104.1040.
SUN Wei LI Da-jian LIU Hong-juan JIA Wei. Fast Single Image Fog Removal based on Atmospheric Scattering Model[J]. Editorial Office of Optics and Precision Engineering, 2013,21(4): 1040-1046 DOI: 10.3788/OPE.20132104.1040.
根据大气散射物理模型及光学反射成像模型,总结并分析了影响单幅图像去雾效果的3大因素,以实现对雾霾图像的快速去雾。基于光学原理,解释了暗影通道现象,从新的角度推导出了大气散射模型中各参数的求法。利用灰度开运算去除白色目标的干扰获得精确的环境光亮度,基于快速联合双边带滤波精确计算了大气散射函数,最后由光学反射模型计算了场景目标的反射率并有效截断至[0
1]区间。本方法可以消除天空及环境光线的影响,能真实复原场景的色彩和清晰度。仿真结果表明,对分辨率为576768的图像处理时间仅为0.517 s,且视觉效果和客观指标比现有算法均有不同程度的提高。与现有图像去雾算法相比
本文提出的参数计算方法提高了运算速度、场景适应能力和复原效果。
Based on the physical model of atmospheric scattering and an optical reflectance imaging model
three major factors influencing the fog removal for a single image were discussed in detail. The dark channel phenomenon was explained by the optical model
and the method to solve the parameters of atmospheric scattering model was rigorously derived from a new view. The gray-scale opening operation was used to eliminate the interference from a while object to obtain the global atmospheric light and the fast joint bilateral filtering technique was proposed to greatly improve the speed and accuracy of atmospheric scattering function solving. Finally
the scene albedo was recovered by inverting this model. Experiments show that the method can remove effectively the effect of lights from sky and environments and can recover the color and definition of original scenes. The simulation results indicate that the processing time for an image of 576768 spends only by 1.7 s. As compared with the existing algorithm
obtained results on a variety of outdoor foggy images demonstrate that the proposed method achieves good restoration for contrast and color deity
and improves image visibility greatly.
NAYAR S K, NARASIMHAN S G. Vision in bad weather [C]. Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Greece: IEEE-ICCV, 1999:820-827.[2]郭璠,蔡自兴,谢斌,等.图像去雾技术研究综述与展望[J].计算机应用,2010,90(9):2471-2412.GUO F,CAI ZX,XIE B,et al.. Review and prospect of image dehazing techniques[J].Journal of Computer Application, 2010,90(9):2471-2412. (in Chinese)[3]TAN K, OAKLEY P J. Physics-based approach to color image enhancement in poor visibility conditions[J]. Optical Society of America, 2001, 18(10): 2460-2467.[4]FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 1-9. [5]TAREL J P, HAUTIERE N. Fast visibility restoration from a single color or gray level image[C]. Proceedings of the 12th IEEE International Conference on Computer Vision, Kyoto.Japan:IEEE-ICCV,2009:2201-2208.[6]HE KM,SUN J,TANG X. Single image haze removal using dark channel prior[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami. USA: IEEE-CVPR, 2009: 1956-1963.[7]PARIS M,FREDO D. A fast approximation of the bilateral filter using a signal processingapproach [C]. Graz, Austria: Springer Verlag,Heidelberg,D-69121,Germany,2006:568-580.[8]CHEN J W,PARIS S, DURAND F. Real-time edge-aware image processing with the bilateral grid[C].Proc. of ACM,SIGGRAPH’07. [S. l.]: ACM Press, 2007. [9]NAMER E, SCHECHNER Y Y. Advanced visibility improvement based on polarization filtered images[C]. Proceedings of the Polarization Science and Remote Sensing II. San Diego,USA: SPIE, 2005:36-45.[10]禹晶,李大鹏,廖庆敏.基于物理模型的快速单幅图像去雾方法[J].自动化学报,2011,37(2):143-49.YU J,LI D P,LIAO Q M. Physics-based fast single image fog removel [J].Acta Automatica Sinica,2011,37(2):143-49. (in Chinese)[11]方帅,王勇,曹洋,等.单幅雾天图像复原[J].电子学报,2010,38(10):2279-2284.FANG S,WANG Y,CAO Y,et al..Restoration of image degraded by haze [J]. Acta Electronica Sinica,2010,38(10):2279-2284. (in Chinese)[12]HAUTIEREN,TAREL J P,AUBERT D,et al..Blind contrast enhancement assessment by gradient ratioing at visible edges[J].Image Analysis and Stereology Journal,2008,27(2):87-95.[13]KOHLER R.A segmentation system based on thresholding [J].Computer Graphics and Image Processing,1981,15(4):319-338.[14]http://research.microsoft.com/en-us/um/people/kahe/cvpr09/index.html[OL].
0
浏览量
117
下载量
25
CSCD
关联资源
相关文章
相关作者
相关机构