浏览全部资源
扫码关注微信
南京航空航天大学 机械结构力学及控制国家重点实验室2. 萨瓦大学材料与机电系统实验室,法国旧阿纳西城
收稿日期:2012-10-22,
修回日期:2012-11-26,
网络出版日期:2013-05-24,
纸质出版日期:2013-05-15
移动端阅览
陈远晟 裘进浩 季宏丽 Ronan Le Breton. 基于双曲函数的Preisach类迟滞非线性建模与逆控制[J]. 光学精密工程, 2013,21(5): 1205-1212
CHEN Yuan-Sheng QIU Jin-hao JI Hong-li LE BRETON Ronan. Modeling and inverse control of Preisach type hysteresis nonlinearity using hyperbola functions[J]. Editorial Office of Optics and Precision Engineering, 2013,21(5): 1205-1212
陈远晟 裘进浩 季宏丽 Ronan Le Breton. 基于双曲函数的Preisach类迟滞非线性建模与逆控制[J]. 光学精密工程, 2013,21(5): 1205-1212 DOI: 10.3788/OPE.20132105.1205.
CHEN Yuan-Sheng QIU Jin-hao JI Hong-li LE BRETON Ronan. Modeling and inverse control of Preisach type hysteresis nonlinearity using hyperbola functions[J]. Editorial Office of Optics and Precision Engineering, 2013,21(5): 1205-1212 DOI: 10.3788/OPE.20132105.1205.
为了补偿压电双晶片驱动器的迟滞非线性,提出了基于双曲函数的Preisach类迟滞非线性建模方法,并用该模型设计了压电双晶片驱动器的逆控制器。首先,用两个双曲函数分别拟合迟滞主环的上升段与下降段,利用坐标变换描述依附于主环的一阶曲线;然后,根据Preisach模型理论的记忆擦除性与次环一致性,基于一阶上升与下降曲线分别描述了次环的上升段与下降段。由于这种建模方法所需的参数远小于Preisach等经典迟滞模型,非常适用于压电驱动器等智能材料系统。实验结果显示,基于这种迟滞非线性模型设计的逆控制器,控制后的最大误差比控制前减小了44.26%,有效地提高了压电双晶片驱动器的定位控制精度。
To compensate the hysteresis nonlinearity of a piezoelectric biomorph actuator
a new model with hyperbola functions was proposed to describe the Preisach type hysteresis nonlinearity
and an inverse controller was designed with the proposed model. Two hyperbola functions were used to fit the curves of hysteresis major loop and then the firstorder ascending and descending branches were described by the coordinate conversion. Based on the wipingout and congruency property of Preisach model
the minor loops were modeled by the corresponding firstorder curves. As the parameters of the proposed model are much less than those of classic hysteresis models
such as Preisach model
the proposed model is suitable for the smart material systems including piezoelectric actuators. Experimental results show that the inverse controller designed with the proposed model can compensate the hysteresis of piezoelectric biomorph actuator
and the maximum control error with inverse controller has reduced by 44.26%.
RAKOTONDRABE M. Bouc-wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators \[J\]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2):428-431.[2]KWAK Y K, KIM S H, AHN J H. Improvement of positioning accuracy of magnetostrictive actuator by means of built-in air cooling and temperature control \[J\]. International Journal of Precision Engineering and Manufacturing, 2011, 12(5):829-834.[3]李欣欣, 王文,陈子辰.超磁致伸缩致动器的广义预测-多模PID控制\[J\]. 光学 精密工程,2010,18(2):412-419.LI X X, WANG W, CHEN Z CH. Generalized predictive-multimode PID control for giant magnetostrictive actuators \[J\]. Opt. Precision Eng., 2010, 18(2): 412-419. (in Chinese)[4]SMITH R C. Inverse compensation for hysteresis in magnetostrictive transducers \[J\]. Mathematical and Computer Modelling, 2001, 33(1-3):285-298.[5]KIM B, WASHINGTON G N, YOON H S. Hysteresis-reduced dynamic displacement control of piezoceramic stack actuators using model predictive sliding mode control \[J\]. Smart Materials and Structures, 2012, 21(5):055018.[6]GE P, JOUANEH M. Tracking control of a piezoceramic actuator \[J\]. IEEE Transactions on Control Systems Technology, 1996, 4(3):209-216.[7]赖志林, 刘向东, 耿洁, 等.压电陶瓷执行器迟滞的滑模逆补偿控制\[J\].光学 精密工程,2011,19(6):1281-1290.LAI ZH L, LIU X D, GENG J, et al.. Sliding mode control of hysteresis of piezoceramic actuator based on inverse Preisach compensation\[J\]. Opt. Precision Eng., 2011, 19(6): 1281-1290. (in Chinese)[8]JANAIDEH M, RAKHEJA S, SU C Y. An analytical generalized prandtl-ishlinskii model inversion for hysteresis compensation in micropositioning control \[J\]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4):734-744.[9]MIELKE A. Generalized prandtl-ishlinskii operators arising from homogenization and dimension reduction \[J\]. Physica B: Condensed Matter, 2012, 407(9):1330-1335.[10]BADEL A, QIU J H, SEBALD G, et al.. Self-sensing high speed controller for piezoelectric actuator \[J\]. Journal of Intelligent Material Systems and Structures, 2008, 19(3):395-405.[11]TRI V M, TJAHJOWIDODO T, RAMON H, et al.. A new approach to modeling hysteresis in a pneumatic artificial muscle using the maxwell-slip model \[J\]. IEEE/ASME Transactions on Mechatronics, 2011, 16(1):177-186.[12]曲东升, 荣伟彬, 孙立宁, 等.压电陶瓷微位移器件控制模型的研究\[J\].光学 精密工程,2002,10(6):602-607.QU D SH, RONG W B, SUN L N, et al.. Research on the control model of piezoelectric micropositioning actuator \[J\]. Opt. Precision Eng., 2002, 10(6): 602-607. (in Chinese)[13]李春涛,谭永红.基于状态观测器的迟滞非线性系统输出反馈控制\[J\].控制与决策,2004,19(9):967-972.LI CH T, TAN Y H. Observer-based adaptive output feedback control of systems preceded by unknown hysteresis \[J\]. Control and Decision. 2004, 19(9): 967-972. (in Chinese)[14]ANG W T, KHOSLA P K, RIVIERE C N. Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications \[J\]. IEEE/ASME Transactions on Mechatronics, 2007, 12(2):134-142.[15]JIANG H, JI H, QIU J, et al.. A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators \[J\]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010, 57(5):1200-1210.[16]SHEN J CH, JYWE W Y, CHIANG H K, et al.. Precision tracking control of a piezoelectric-actuated system \[J\]. Precision Engineering, 2008, 32(2):71-78.[17]LEE S H, OZER M B, ROYSTON T J. Piezoceramic hysteresis in the adaptive structural vibration control problem \[J\]. Journal of Intelligent Material Systems and Structures, 2002, 13(2-3):117-124.[18]BADEL A, QIU J H, NAKANO T. A new simple asymmetric hysteresis operator and its application to inverse control of piezoelectric actuators \[J\]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2008, 55(5):1086-1094.[19]SONG G, ZHAO J Q, ZHOU X Q, et al.. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse preisach model \[J\]. IEEE/ASME Transactions on Mechatronics, 2005, 10(2):198-209.[20]MAKAVEEV D, DUPR L C, WULF M D, et al.. Modeling of quasistatic magnetic hysteresis with feed-forward neural networks \[J\]. Journal of Applied Physics, 2001, 89(11):6737-6739.[21]CHEN Y S, PALACIOS J, SMITH E C, et al.. Tracking control of piezoelectric stack actuator using modified prandtl-ishlinskii model [C]. ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Scottsdale, Arizona, 2011, 2:35-41.
0
浏览量
93
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构