浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2012-04-12,
修回日期:2012-06-20,
网络出版日期:2013-06-20,
纸质出版日期:2013-06-15
移动端阅览
赵磊 巩岩 赵阳. 光刻投影物镜中透镜X-Y柔性微动调整机构[J]. 光学精密工程, 2013,21(6): 1425-1433
ZHAO 赵 GONG Yan ZHAO Yang. Flexure-based X-Y micro-motion mechanism used in lithography lens[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1425-1433
赵磊 巩岩 赵阳. 光刻投影物镜中透镜X-Y柔性微动调整机构[J]. 光学精密工程, 2013,21(6): 1425-1433 DOI: 10.3788/OPE.20132106.1425.
ZHAO 赵 GONG Yan ZHAO Yang. Flexure-based X-Y micro-motion mechanism used in lithography lens[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1425-1433 DOI: 10.3788/OPE.20132106.1425.
针对光刻投影物镜中透镜X-Y调整机构调整量程小、调整精度高的特点,提出了一种基于柔性铰链的X-Y微动调整机构,并将其应用在光刻投影物镜模型中进行了实验验证。首先,基于机构自由度和机构瞬心等概念介绍了该机构的工作原理。然后,用柔性铰链代替传统铰链完成了该机构的结构设计,并对该机构的运动方向刚度、位移输入-输出比以及固有频率和阵型等进行了仿真分析。分析结果表明:该机构X,Y方向的刚度值为1.99 m/N和1.96 m/N,X,Y方向的位移输入-输出比值分别为-2.5和-2.56,机构X,Y方向运动的原理误差分别为实际量的8.22%和6.68%。最后,将研制的X-Y微动调整机构用于光刻投影物镜验证模型中,给出了X-Y调整机构补偿前后的系统波像差。结果显示:模型补偿前后的系统波像差RMS分别为50.864 nm和25.933 nm。由此表明,本文设计的柔性微动调整机构补偿效果明显,能够满足光刻投影物镜高精度X-Y调整补偿要求。
A novel X-Y micro-motion mechanism was proposed based on a flexure hinge to meet the demand of the lithographic lens for X-Y adjusting mechanism with a small range and a high precision
then it was applied to the lithographic lens model to testify its performance. Firstly
the working principle of the mechanism was introduced based on the concept of mechanism degree of freedom(DOF) and instant center. Then
the structure of the mechanism was designed by using the flexure hinge instead of tradition hinge and the motion rigidity of mechanism
the ratio of input and output for displacement and its natural frequency and modes were all analyzed. The analysis results show that the rigidity values of mechanism X and Y are 1.99 m/N and 1.96 m/N respectively
the ratio of input and output for displacement in X and Y axes are -2.5 and -2.56
respectively
and the principle errors in X and Y axes are 8.22% and 6.68%
respectively of its useful displacement. Finally
the mechanism was used in the lithographic lens systems to prove its performance
and the wavefront aberrations of the lens system were tested. The experiment results indicate that the wavefront aberrations of the systems before and after the mechanism adjusting compensations are 50.864 nm and 25.933 nm respectively. The X-Y flexural mechanism has good performance of aberration compensation
and it can satisfy the requirements of lithographic lens for high precision X-Y micro adjusting.
钟掘. 机械工程学科发展战略报告[M]. 北京:科学出版社,2010.ZHONG J. Strategic Development Report of Mechanical Engineering Discipline[M]. Beijing: The Science Press, 2010. (in Chinese)[2]YUICHI S, KUMAGAYA S. Apparatus for holding optical element, barrel, exposure apparatus, and device producing,US:2007/0183064[P].2007-08-09[3]RAU J,SCHOEPPACH A,WEBER U. Objective with at least one optical element,US:7239462[P].2007-07-03[4]TRUNZ R H M,HILGERS R,MERZ E,et al.. Optical imaging device, particularly an objective, with at least one optical element,US:6191898[P].2001-02-20[5]RYU J W,GWEON D,MOON K S. Optimal design of a flexure hinge based XY wafer stage [J]. Precision Engineering,1997,27:18-28.[6]YONG Y, KLU T F. Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges [J]. Mechanism and Machine Theory, 2009, 44:1156-1175.[7]SMITH S T, CHETWYND D G, BOWEN D K. Design and assessment of monolithic high precision translation mechanisms [J]. J. Phys. E:Sci. Instrum., 1987,20:977-983. [8]鲁亚飞,范大鹏,范世珣,等.快速反射镜两轴柔性支撑设计[J]. 光学 精密工程,2010,18(12):2574-2582.LU Y F, FAN D P, FAN SH X, et al.. Design of two-axis elastic support for fast steering mirror [J]. Opt. Precision Eng., 2010, 18(12): 2574-2582. (in Chinese)[9]李琳,杨勇.空间曲线切口式柔性铰的设计[J]. 光学 精密工程,2010,18(10):2192-2198.LI L, YANG Y. Design of flexure hinge with space curve notches [J]. Opt. Precision Eng., 2010, 18(10): 2192-2198. (in Chinese)[10]王忠素,翟岩,梅贵,等.空间光学遥感器反射镜柔性支撑的设计[J]. 光学 精密工程,2010,18(8):1833-1841.WANG ZH S, ZHAI Y, MEI G, et al.. Design of flexible support structure of reflector in space remote sensor [J]. Opt. Precision Eng., 2010, 18(12): 1833-1841. (in Chinese)[11]KIM H S,KIM E J,SONG B S. Diamond turning of large off-axis aspheric mirrors using a fast tool servo with on-machine measurement [J]. Journal of Materials Processing Technology, 2004,146: 349-355.[12]LOBONTIU N,GATCLA E. Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms [J]. Computers and Structures. 2003, 81:2797-2810. [13]LOBONTIU N. Compliant Mechanisms: Design of Flexure Hinges[M]. Boca Raton:CRC Press, 2003.[14]HALE LC. Principles and techniques for designing precision machines[D].California: University of California, 1999.[15]PHAM H H, CHEN I M. Stiffness modeling of flexure parallel mechanism [J]. Precision Engineering, 2005, 29:467-478.[16]PARK S,YANG S. A mathematical approach for analysing ultra-precision positioning system with compliant mechanism [J]. Journal of Materials Processing Technology, 2005, 164-165: 1584-1589.[17]王华,张宪民,邓俊广.基于压电陶瓷驱动的精密定位平台研究测试技术学报[J]. 测试技术学报,2007,21(4):295-300.WANG H, ZHANG X M, DENG J G. Research on a precision positioning stage based on piezoelectric actuators[J].Journal of Test and Measurement Technology,2007,21(4):295-300. (in Chinese)[18]孙立宁,董为,杜志江.基于大行程柔性铰链的并联机器人刚度分析[J].机械工程学报,2005,41(8):90-95.SUN L N, DONG W, DU ZH J. Stiffness analysis on a wide-range flexure hinge-based parallel manipulator [J]. Chinese Journal of Mechanical Engineering,2005,41(8):90-95. (in Chinese)[19]孙恒,陈作模. 机械原理[M]. 北京:高等教育出版社,2000.SUN H, SUN Z M. Mechanical Principle[M]. Beijing: High Education Press, 2000. (in Chinese)
0
浏览量
681
下载量
17
CSCD
关联资源
相关文章
相关作者
相关机构