浏览全部资源
扫码关注微信
北京信息科技大学 信息微系统研究所2. 中国电子科技集团公司 第四十三研究所3. 北京大学 微米纳米加工技术国家级重点实验室
收稿日期:2013-01-16,
修回日期:2013-03-04,
网络出版日期:2013-06-20,
纸质出版日期:2013-06-15
移动端阅览
缪旻 张小青 姚雅婷 沐方清 胡独巍. 60 GHz贴片天线用低温共烧陶瓷基板的微机械加工[J]. 光学精密工程, 2013,21(6): 1447-1455
MIAO Min ZHANG Xiao-qing YAO Ya-ting MU Fang-qing HU Du-wei. Micromachining of LTCC Substrate for 60 GHz Patch Antenna[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1447-1455
缪旻 张小青 姚雅婷 沐方清 胡独巍. 60 GHz贴片天线用低温共烧陶瓷基板的微机械加工[J]. 光学精密工程, 2013,21(6): 1447-1455 DOI: 10.3788/OPE.20132106.1447.
MIAO Min ZHANG Xiao-qing YAO Ya-ting MU Fang-qing HU Du-wei. Micromachining of LTCC Substrate for 60 GHz Patch Antenna[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1447-1455 DOI: 10.3788/OPE.20132106.1447.
为有效提升60 GHz贴片天线及阵列的辐射带宽,提出利用微机械手段加工天线的低温共烧陶瓷(LTCC)基板。通过微切削方法在特定生瓷层上制作贯通结构,充填可挥发牺牲材料,完成基板叠压、烧结,待牺牲层升华排净后最终构成三维微结构。设计、制备了悬臂梁、围框结构和微管道等工艺样品。对天线设计电性能进行全波分析,并测试了微流道散热特性。实验结果表明:提出的方法成功解决了不同轴系各方向收缩率不一致、空腔塌陷等工艺问题,制作出的悬臂梁与围框尺寸高宽比达4∶1,总长为12 mm,总层厚为1.4 mm;内嵌微流道横截面为200 m200 m,长度达25 cm以上;内部光滑,基板表面贴装发热功率密度达2 W/cm
2
的功率器件时提供40 K以上的冷却能力;基板经过微机械加工后,天线的辐射带宽可从2.7 GHz增加到5.3 GHz,而增益的损失甚微。这些结果显示,用简单、低成本的微机械加工方法可在不显著增加制造成本的情况下有效扩增毫米波贴片天线的辐射带宽,为贴片天线阵中有源发射功率器件的设计和贴片天线的三维高密度集成提供了有效的技术支持。
To effectively enhance the radiation bandwidth of 60 GHz patch antennas
a micromachining process for the Low Temperature Co-fired Ceramic (LTCC) substrate was proposed. Specific green tape layers of substrate were micromilled to form perforated structures which were then filled with sacrificial materials. Thereafter
the individual layers were stacked up and sintered to form a three-dimensional (3D) microstructure. The cantilevers
enclosing frame structures and embedded microchannels were fabricated to verify the effectiveness of the process. The electrical properties of the antenna designs were validated by a full-wave analysis
and the effectiveness of the cooling channel was experimentally tested. The experiments show that the proposed process solves problems like the variation of contraction rate in various axes and the collapsing of the embedded cavities. The 3D frame
cantilever and the embedded microfluidic structure are fabricated with a maximum aspect ratio as high as 4∶1
and a total thickness of 1.4 mm (14 layers). The cross section size of the microchannel is as large as 200 m200 m and its maximum length is beyond 2.5 cm. With smooth inner walls
the smooth microfluidic flow may provide a cooling effect over 40 K for the integrated power devices with a heating power density of 2 W/cm
2
. The simulated radiation pattern shows a doubled increase of radiation bandwidth from 2.7 GHz to 5.3 GHz and has a little gain loss. These results demonstrate that simple and low-cost micromachining may effectively enhance the radiation bandwidth of patch antennas without additional costs
which is beneficial to the design and implementation of large scale and highly integrated transmitting/receiving arrays with active power devices.
DANIELS R C, HEATH R W. 60 GHz wireless communications: emerging requirements and design recommendations [J]. IEEE Vehicular Technology Magazine, 2007,2(3):41-50.[2]HUNT B, DEVLIN L. LTCC for RF modules [C]. Packaging and interconnects at microwave and mm-wave frequencies, IEEE Seminar, 2000: 511-515.[3]LI R L, DEJEAN G, MAENG M, et al.. Design of compact stacked-patch antennas in LTCC multilayer packaging modules for wireless applications [J]. IEEE Transactions on Advanced Packaging, 2004, 27(4): 581-589.[4]BYUN W, EUN K CH, KIM K S, et al.. Design of 88 stacked patch array antenna on LTCC substrate operating at 40GHz band [C]. Microwave Conference Proceedings, 2005. APMC 2005. Asia-Pacific Conference Proceedings, 2005: 1-4.[5]BONDARIK A, JUN D S, KIM J M, et al.. Investigation of microstrip antenna array stacked structure realized on LTCC for 60 GHz band [J]. Microwave and Optical Technology Letters, 2010, 52(3):648-652. [6]廖小平,肖建斌. 毫米波MEMS开关S参数在开关过程中的瞬态变化[J]. 光学 精密工程,2012,19(3):593-597. LIAO X P, XIAO J B. Transient S-parameters of millimeter-wave MEMS switch [J]. Opt. Precision Eng., 2012, 19(3):593-597. (in Chinese)[7]KHOONG L E, TAN Y M, LAMA Y C. Overview on fabrication of three-dimensional structures in multi-layer ceramic substrate [J]. Journal of the European Ceramic Society,2010,30:19731987.[8]MIAO M, JIN Y F, GAN H, et al.. Investigation of a Unified LTCC-based Micromachining and Packaging Platform for High Density/Multifunctional Microsystem Integration[C]. The 62nd Electronic Components and Technology Conference (ECTC), San Diego, California, USA, 2012 :377-384. [9]薛严冰,唐祯安. 陶瓷微热板阵列式可燃气体传感器[J]. 光学 精密工程,2012,20(10):2200-2206. XUE Y B, TANG ZH A. Gas sensor array based on ceramic micro-hotplate for flammable gas detection [J]. Opt. Precision Eng., 2012, 20(10):2200-2206. (in Chinese)[10]林滨,张彦斌,陈善功. 基于非负矩阵分解算法的工程陶瓷磨削表面损伤检测[J].光学 精密工程,2012,20(11):2459-2464.LIN B, ZHANG Y B, CHEN SH G. Damage detection of engineering ceramics ground surface based on NMF [J]. Opt. Precision Eng., 2012, 20(11):2459-2464. (in Chinese)[11]GODARA L C. Handbook of Antennas in Wireless Communication [M]. Boca Raton, London, New York Washington:CRC Press, 2002:34-49.[12]THELEMANN T, THUST H, BISCHOFF G, et al.. Liquid cooled LTCC-substrates for high power applications [J]. The International Journal of Microcircuits and Electronic Packaging, 2000, 23(2):209-214. [13]ZHANG Y F, CHEN J Q, BAI SH L, et al.. Microchannel water cooling for LTCC based microsystems [C]. 11th Electronics Packaging Technology Conference (EPTC), 2009: 626-629.[14]KUMAR G, RAY K P. Broadband Microstrip Antennas [M].USA:Artech House, 2003:7-9.
0
浏览量
509
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构