浏览全部资源
扫码关注微信
上海电力学院 电子科学与技术系
[ "汤乃云(1976-),女,江苏盐城人,博士,副教授,2002年于苏州大学获得硕士学位,2005年于中国科学院上海技术物理研究所获得博士学位,主要从事低维纳米结构的光电性质的研究。" ]
收稿日期:2012-12-31,
修回日期:2013-02-05,
网络出版日期:2013-06-20,
纸质出版日期:2013-06-15
移动端阅览
汤乃云. 应变对耦合量子点空穴基态混合特性的影响[J]. 光学精密工程, 2013,21(6): 1472-1478
TANG Nai-yun. Effect of strain on formation of antibonding hole ground states in InAs quantum dots[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1472-1478
汤乃云. 应变对耦合量子点空穴基态混合特性的影响[J]. 光学精密工程, 2013,21(6): 1472-1478 DOI: 10.3788/OPE.20132106.1472.
TANG Nai-yun. Effect of strain on formation of antibonding hole ground states in InAs quantum dots[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1472-1478 DOI: 10.3788/OPE.20132106.1472.
考虑应变对量子点结构产生的重要影响,采用六带KP理论模型计算了耦合量子点系统在不同耦合距离下空穴基态及激发态的能态特性
探讨了应变效应对耦合量子点空穴基态反成键态特性的影响。计算结果表明
单轴应变对量子点的空穴能带有主要影响:首先它使重空穴(HH)
轻空穴(LH)能级分裂增加
减少了HH
LH的混合;同时
改变了LH的束缚势垒
使得空穴基态波函数较多局限在底部量子点中。在不考虑应变的情况下
随着量子点之间耦合强度的减小
价带基态能级和激发态能级发生反交叉现象
基态从成键态翻转为反成键态。应变效应使得量子点的重空穴及轻空穴的能带发生改变
轻重空穴耦合减弱
基态和激发态之间发生成键、反成键态翻转的临界距离明显减小。
In consideration of the effect of consequent elastic strain due to the lattice mismatch on the electronic structures of Quantum Dots( QDs)
a six-band KP model was used to explore the two lowest single-particle hole states in two vertically Coupled InAs/GaAs QDs (CQDs). The elastic strain due to the lattice mismatch between InAs and GaAs was included in the calculations. The theoretical results indicate that uniaxial strain effects play a dominant role in the band offset and they affect the hole states of the coupled dot system. First
it increases the splitting energy between the heavy-hole (HH) and light-hole (LH) levels and reduces the mixing of HH and LH. Simultaneously
the strain in the dot molecule affects the potential distribution of CQDs
inducing more ground states are confined on the bottom dots. Compared to the case without strain effect
the critical distance between QDs is reduced to about 2 nm
by which the hole ground states are anti-bonding-like. Therefore
the strain effects in the CQDs change the potential distribution
weaken the coupling strength between HH and LH and reduce the critical inter-dot distance.
BENJAMIN LINANAU,KATHYLUDGE,WENG W,et al.. Failure of the factor in describing dynamical instabilities and chaos in quantum-dot lasers[J]. Phys. Rev. E, 2012, 86:652-657.[2]KAVOUSANAKI E ,BURKARD G. Signatures of spin blockade in the optical response of a charged quantum dot[J] . Phys. Rev. B, 2012, 86:4512-4519. [3]BURKARD G. Quantum information: Blockade at a different level [J]. Nature Nanotechnology,2010,7:617-619.[4]KUMBHA K P, Observation of nonlinear optical effects in some semiconductor quantum dot materials using Nd YAG laser radiation[J]. Opt. Precision Eng., 2011, 19(2):228-236.[5]CLIMENTE J I,KORKUSINSKI M,GOLDONI G. Influence of valence-band spin-orbit coupling on the entanglement of excitons in coupled quantum dots[J]. Phys. Rev. B, 2008, 78:115323-1-12.[6]HSIEH C Y, CHERITON R,KORKUSINSKI M. Valence holes as Luttinger spinor based qubits in quantum dots[J]. Phys. Rev. B, 2009, 80:235320 1-7.[7]CLIMENTE J I,KORKUSINSKI M, GOLDONI G. Theory of valence-band holes as Luttinger spinors in vertically coupled quantum dots [J]. Physica E (Amsterdam), 2008, 40:1862-1864.[8]CHWIEJ T,SZAFRAN B. Szafran, Signatures of antibonding hole ground states in exciton spectra of vertically coupled quantum dots in an electric field[J]. Phys. Rev. B, 2010, 81:0753021-8.[9]JASKOLSKI W,ZIELINSKI M, GARNETT W,et al.. Strain effects on the electronic structure of strongly coupled self-assembled InAs∕GaAs quantum dots: Tight-binding approach[J]. Phys. Rev. B, 2006, 74:195339-1-9.[10]VURGAFTMAN I,MEYER J R,RAM-MOHAN L R. Band parameters for III-V compound semiconductors and their alloys[J].Journal of Applied Physics, 2001, 89: 5815-5872. [11]LUCJAN J,PAWEL H,ARKADIUSZ W.Quantum Dots[M]. Berlin: Springer-Verlag Berlin Herderlberg Press,1998.
0
浏览量
152
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构